Transfer Case Slope = 2* down
$10^{*}-2^{*}=8^{*}$ operating angle for the transfer case
Driveshaft Slope $=10$ * down
Pinion Slope $=4.5^{*}$ down
$10^{*}-4.5^{*}=5.5^{*}$ operating


We can see that the front operating angle is $8^{\circ}$. Assuming we are using a 1350 series u-joint, and the vehicle is not a frequent, long-range freeway cruiser, nor does it have a super-flexy suspension with monstrous travel, we decide that this is satisfactory. The axle joint operating angle is $4.5^{\circ}$. Because it is a rear driveshaft, the rear pinion will rotate up, let's say $2^{\circ}$ under cruise throttle. Since our measurements and calculations were done at static, this means that in reality, under cruise throttle, the pinion slope would change from $4.5^{\circ}$ down to $0^{\circ}$ down. This would make the axle joint operating angle actually $10^{\circ}$ $6.5^{\circ}=3.5^{\circ}$ at cruise. Since we need it to equal $8^{\circ}$ at cruise, we need to rotate the pinion at rest to $4.5^{\circ}$ up. This will result in a static pinion slope of $0^{\circ}$. So the would net a cruise throttle pinion slope of $0^{\circ}+2^{\circ}$ $=2^{\circ}$. That would make our axle joint operating angle now $10^{\circ}-2^{\circ}=8^{\circ}$ - A perfect match for the front!

