

ON-BOARD DIAGNOSTICS BOSCH M5.2.1 ENGINE MANAGEMENT

Vehicle Coverage: Discovery Series II 1999 to 2004 MY Range Rover 38A 1999 to 2002 MY

1 Contents

1	Contents	2
2	Introduction	5
	2.1 Diagnostic Trouble Codes and Freeze Frames	5
	2.2 System Interfaces	6
	2.3 Inputs and Outputs	6
3	Mode \$06 Data – In accordance with SAE J1979	8
4	Onboard Monitoring	18
	4.1 Catalyst Monitoring	18
	4.1.1 Description	18
	4.1.2 Monitoring Structure	19
	4.1.3 Block Diagram of system Operation	21
	4.2 Misfire Monitoring	23
	4.2.1 Description	23
	4.2.2 Monitoring Structure	24
	4.2.3 Fault Processing for Emissions Relevant Misfire	27
	4.3 Secondary Air Injection System Monitoring	30
	4.3.1 Description	30
	4.3.2 Passive Secondary Air Injection Diagnostic Monitoring Structure	32
	4.3.3 Active Secondary Air Injection Diagnostic Monitoring Structure	33
	4.4 Evaporative Emission System Monitoring – 0.040" (1.0mm) Diameter	36
	4.4.1 Description	36
	4.4.2 Monitoring Structure	37
	4.5 Evaporative Emission System Monitoring - 0.020" (0.5mm) Diameter	42
	4.5.1 Description	42
	4.6 Fuel System Monitoring	50
	4.6.1 Description	50
	4.6.2 Monitoring Structure	53
	4.7 Oxygen Sensor Monitoring	55
	4.7.1 Description	55
	4.7.2 Monitoring Structure	56
	4.7.3 Oxygen Sensor Heater Monitoring Description	57
	4.7.4 Oxygen Sensor Heater Monitoring Structure	58
	4.8 Thermostat Monitoring	65
	4.8.1 Description	65
	4.8.2 Monitoring Structure	66
	4.9 Engine Speed and Position Sensor (Crankshaft Sensor)	69
	4.9.1 Description	69
	4.10 Camshaft Position Sensor	71
	4.10.1 Description	71

LAND--ROVER

4.11 Engine Coolant Temperature Sensor	72
4.11.1 Description	72
4.12 Mass Airflow Sensor and Intake Air Temperature Sensor	73
4.12.1 Mass Airflow Sensor	73
4.12.2 Description	73
4.12.3 Intake Air Temperature Sensor	74
4.12.4 Description	74
4.13 Knock Sensor	75
4.13.1 Description	75
4.14 Throttle Position Sensor	76
4.14.1 Description	76
4.15 Engine Control Module Self Test	77
4.15.1 Description	77
4.16 Fuel Level Sensor	78
4.16.1 Description	78
4.17 Vehicle Speed Signal	79
4.17.1 Description	79
4.18 Power Supplies	80
4.18.1 Description	80
4.19 Rough Road signal	81
4.19.1 Description	81
4.20 Transfer Box Malfunction Indicator Lamp Request (Range Rover 38A Only)	82
4.20.1 Description	82
4.21 Air Conditioning System (Discovery Series II Only)	84
4.21.1 Description	84
4.22 Fuel Injectors	86
4.22.1 Description	86
4.23 Idle Speed Control Actuator	88
4.23.1 Description	88
4.24 Fuel Pump Relay	90
4.24.1 Description	90
4.25 Malfunction Indicator Lamp	91
4.25.1 Description	91
4.26 Hill Descent Control Signal – Discovery Series II Only	92
4.26.1 Description	92
4.27 Engine Speed Signal	93
4.27.1 Description	93
4.28 Environmental-Box Cooling Fan – Range Rover 38A Only	94
4.28.1 Description	94
4.29 Low Range Signal	95
4.29.1 Description	95
4.30 Controller Area Network System	96

4.30.1	Description	96
4.31 Pos	sitive Crankcase Ventilation System Monitoring	97
4.31.1	Description	97

2 Introduction

The Engine Control Module (ECM) controls engine fuelling using sequential injection to all cylinders. Four double-ended ignition coils provide ignition. The ECM detects and corrects cylinder knock by advancing or retarding the ignition timing. In the event of a knock system failure a safe ignition map is used.

The ECM uses the inputs from sensors to control engine performance and restrict emissions in line with Onboard Diagnostics II (OBDII). These sensors include a Mass Air Flow (MAF) Sensor, Throttle Position (TP) Sensor, Engine Coolant Temperature (ECT) Sensor and Oxygen (O2) Sensors. The ECM also receives vehicle data, such as road speed from other control modules. The Central Processor Unit (CPU) within the ECM processes all of these inputs, applies correction factors, such as short and long term fuel trim, and issues commands to the engine actuators, injectors and coils.

On vehicles equipped with automatic transmissions the ECM is connected to the automatic Transmission Control Module (TCM) via the Controller Area Network (CAN) bus. The CAN bus conveys data, requests and messages between the control modules. Generally the automatic TCM passes OBD data and requests to the ECM, which stores freeze frame data and activates the Malfunction Indicator Lamp (MIL) when a fault occurs.

2.1 Diagnostic Trouble Codes and Freeze Frames

The ECM and automatic TCM software monitors each fault condition and allocates a mnemonic Diagnostic Trouble Code (DTC) to specific faults; e.g. P0170 fuel trim malfunction. The software also checks that the monitoring conditions are valid and the current status of the fault. There are common condition flags for each fault module.

Generally, an emission relevant fault is not reported as soon as it occurs, but only after it is flagged during a second valid drive cycle. A drive cycle is defined by a period of engine operation \emptyset 10 seconds and the diagnostic fault path in question having been completed at least once. If the fault is still present on the subsequent drive cycle, the OBD system logs the fault and freeze frame data and illuminates the MIL.

If the fault is not present in the subsequent driving cycle, the system holds it as a temporary fault and counts a number of drive cycles before deleting it from the fault memory providing it does not reoccur. A re-occurring fault will be immediately logged as a permanent emissions fault, and may illuminate the MIL according to the type of fault.

When an emissions fault is recognised, the system monitors over Warm Up Cycles (WUC). A warm up cycle is defined by a period of engine operation where the ECT has increased by 21°C (40°F) and exceeds 71°C (160°F).

Monitoring during warm up is also relevant to permanent faults. If the flagged fault is not present in a subsequent drive cycle, the warm up cycle counter is started. If the fault is not flagged again, the MIL remains illuminated but is extinguished after 3 fault free WUC. The fault is finally deleted from the fault memory after 40 fault free WUC.

In the case of misfire monitoring two levels of misfire are checked:

- *∉*[#] Emission relevant misfire is monitored over 1000 engine revolutions and 2 drive cycles.
- ∉[#] Catalyst damage misfire is monitored over 200 engine revolutions. If the threshold is exceeded in any 200 engine revolutions segment the MIL is immediately flashed to signal the driver to reduce engine load. When the misfire decreases below the catalyst damage threshold or ceases altogether the MIL is permanently illuminated.

If the freeze frame memory is free the first occurring fault will store freeze frame data regardless of the source. If a subsequent fault occurs, the current freeze frame data is not overwritten unless this fault is of higher freeze frame priority. CARB faults, freeze frame data and other parameters can be read through the diagnostic port via a generic scan tool.

2.2 System Interfaces

The M5.2.1 ECM has some bi-directional (input and output) interfaces, and these are as follows:

- ∉ # Diagnostics interface via K Line.
- ∉ # CAN interface to the automatic TCM.

There are also interactions between the M5.2.1 ECM and other vehicle systems such as the Anti-lock Braking System (ABS) system.

2.3 Inputs and Outputs

Inputs

- *∉*[#] Ignition Switch (position II)
- *∉*# Immobiliser interface
- ∉ # Engine Speed and Position Sensor (Crankshaft Sensor)
- ∉# Camshaft Position Sensor
- ∉# ECT Sensor
- *e*# Intake Air Temperature (IAT) Sensor (integrated into the MAF Sensor)
- ∉# MAF Sensor
- ∉# Knock Sensors (2 off)
- ∉# O2 Sensors (4 off)
- *∉*[‡] Fuel Tank Pressure Sensor (Except Discovery LEV Phase II and ULEV)
- ∉ # Fuel Level Sensor (Discovery Series II, NAS Tier I and LEV Phase I)
- *∉*[#] Self Levelling, Anti Lock Braking System (SLABS) Vehicle Speed (Discovery Series II only)
- *∉*[#] SLABS Rough Road signal (Discovery Series II only)
- *∉*[#] ABS Vehicle Speed (Range Rover 38A only)
- *∉* ABS Rough Road signal (Range Rover 38A only)

- *∉*[#] Transfer Box MIL request (Range Rover 38A only)
- ## Thermostat Monitoring bottom hose temperature (LEV Phase II and ULEV only)
- g# Diagnose Module Tank Leakage (DMTL) 0.020" (0.5mm) Leak Detection (Discovery LEV Phase II and ULEV only)
- ∉ # Analogue Fuel Level (Range Rover 38A, Discovery LEV Phase II and ULEV)
- ∉# Air Conditioning Standby
- *∉*[#] Air Conditioning Request (Range Rover 38A only)

Outputs

- ∉# MIL
- ∉# Fuel Injectors (8 off)
- ∉# Ignition coils (4 Double Ended)
- ∉# O2 Sensor Heaters (4)
- ∉ # Fuel Pump Relay
- *et* Air Conditioning Compressor enable
- *et* Air Conditioning Condenser Fans Relay
- ## Evaporative Emission Canister Vent Valve
- *e*[#] Evaporative Emission Canister Purge Valve
- ∉# Idle Speed Control Valve
- *e*# Instrument Pack "ECT Signal" Pulse Width Modulation (PWM) signal (Discovery Series II only)
- et SLABS Hill Decent Control (HDC) Multiplexed PWM signal (Discovery Series II only)
- ∉ # Engine Speed signal
- *∉*[#] Environmental-Box (E-Box) Cooling Fan (Range Rover 38A only)
- ∉ # Fuel Used signal (Range Rover 38A only)
- *∉*[#] DMTL Pump 0.020" (Discovery LEV Phase II and ULEV only)
- ∉# DMTL Valve 0.020" (Discovery LEV Phase II and ULEV only)
- *∉*[♯] Secondary Air Injection Pump Relay (LEV Phase I, Phase II and ULEV only)
- *∉*[#] Secondary Air Injection Control Valve (LEV Phase I, Phase II and ULEV only)

3 Mode \$06 Data – In accordance with SAE J1979

Mode \$06 enables access to the most current diagnostic results and thresholds of non-continuous diagnostic routines. Each individual parameter is identified by a Component Identifier (CID).

Following a power fail or after a delete error memory (Mode 3) request all values will be set to \$00.

Values are stored in the battery backed RAM. Additional diagnostic results are available for LEV phase I, Phase II and ULEV vehicles.

TID \$00

Identifies the TID services supported by the ECM, 0 = No, 1 = Yes.

DATA 3: --> \$FF (no significance) Data is bit encoded across the remaining 4 data bytes DATA 4: --> TID \$01 .. TID \$08 (Bit 7 corresponds to TID \$01) DATA 5: --> TID \$09 .. TID \$10 DATA 6: --> TID \$11 .. TID \$18 DATA 7: --> TID \$19 .. TID \$20 (Bit 0 corresponds to TID \$20)

TIDs \$20; \$40; \$60; \$80; \$A0; \$C0 and \$E0 respond similarly for their block of 32 TIDs.

For all supported TIDs the following applies: -

- DATA 3: Bit 0 6: Number of the measuring path within the TID, i.e.; the component identifier (CID). Bit 7: Type of test limit: 0 = Test limit is maximum value. The test fails if test value is greater than test limit
 - 1 = Test limit is minimum value. The test fails if test value is less than test limit
- DATA 4 + 5: 2- byte value of the measured value
- DATA 6 + 7: 2- byte value of the threshold value

Catalyst conversion

DATA 3 (TC6KATC/2): Bit 0 - 6: Number of the measuring path within the TID = CID. Bit 7: Type of test limit: 0 = Test limit is maximum value. Test fails if test value > test limit 1 = Test limit is minimum value. Test fails if test value < test limit

DATA 4 + 5 (TC6KATW/2): 2- byte value of the measured value

DATA 6 + 7 (TC6KATS/2): 2- byte value of the threshold value

	J1979 Mode \$06 Data				
CID \$ [h]	Fault Simulation	Test Value: Threshold	Indicated Fault	Display	
05	B_szkat=0à 1	ahkat > AHKATMX	Defective Catalyst Bank A	Pass/Fail	
0A	B_szkat=0à 1 AND B_fakat = true	ahkat > AHKTMXT	Defective Catalyst Bank A	Pass/Fail	
08	B_szkat=0à 1 AND (ahkat+ahkat2) >AHKATS AND ahkat>=ahkat2	ahkat > AHKATSB	Combined Fault Bank A	Pass/Fail	
07	B_szkat=0à 1 AND ahkat<=AHKATSB AND ahkat2<=AHKATSB	ahkat+ahkat2 >AHKATS	Combined Fault Banks A and B	Pass/Fail	
06	B_szkat2=0à 1	ahkat2 > AHKATMX	Defective Catalyst Bank B	Pass/Fail	
0B	B_szkat2=0à 1 AND B_fakat2 = true	ahkat2 > AHKTMXT	Defective Catalyst Bank B	Pass/Fail	
09	B_szkat2=0à 1 AND (ahkat+ahkat2)>AHKATS AND ahkat2>=ahkat	ahkat2 > AHKATSB	Combined Fault Bank B	Pass/Fail	
07	B_szkat2=0à 1 AND ahkat<= AHKATSB AND ahkat2<=AHKATSB	ahkat+ahkat2 >AHKATS	Combined Fault Banks A and B	Pass/Fail	

TID \$02

O2 Sensors

Not supported – covered by mode 5

Secondary Air Injection System (Supported for LEV Phase I, Phase II and ULEV)

- DATA 3 (TC6SLS/2): Bit 0 6:Number of the measuring path within the TID = CID. Bit 7: Type of test limit: 0 = Test limit is maximum value. Test fails if test value > test limit 1 = Test limit is minimum value. Test fails if test value < test limit
- DATA 4 + 5 (TC6SLSW/2): 2- byte value of the measured value

DATA 6 + 7 (TC6SLSS/2): 2- byte value of the threshold value

	J1979 Mode \$06 Data				
CID \$ Fault Simulation Test Value: Threshold Indicated Fault Displa					
05	AIOSLS = 55	ziosls < AIOSLS	Secondary Air Injection Functionality Fault Bank A	Pass/Fail	
06	AIOSLS2 = 55	ziosls2 < AIOSLS2	Secondary Air Injection Functionality Fault Bank B	Pass/Fail	
03	DFRMSLV = 0.05	dfrmsla > DFRMSLV	Control Valve Sealing Bank A	Pass/Fail	
04	DFRMSLV = 0.05	dfrmsla2 > DFRMSLV	Control Valve Sealing Bank B	Pass/Fail	
01	DFRMFC = 0.08	dfrmsla < DFRMFC	Flow Check Bank A	Pass/Fail	
02	DFRMFC = 0.08	dfrmsla2 < DFRMFC	Flow Check Bank B	Pass/Fail	

TID \$04

Exhaust Gas Recirculation Not fitted

Evaporative Emission (EVAP) System - Vehicles with 0.040" (1.0mm) Leak Detection System

- DATA 3 (TC6TESC): Bit 0 6: Number of the measuring path within the TID = CID. Bit 7: Type of test limit: 0 = Test limit is maximum value. Test fails if test value > test limit 1 = Test limit is minimum value. Test fails if test value < test limit
- DATA 4+ 5 (TC6TESW): 2- byte value of the measured value

DATA 6+ 7 (TC6TESS): 2- byte value of the threshold value

	J1979 Mode \$06 Data				
CID \$ [h]	Fault Simulation	Test Value: Threshold	Indicated Fault	Display	
22	TTEDST = 2.5s, TDTEGR = 1.0s	tdteab > TDTEGR	Large leak (timeout)	Pass/Fail	
3	GFSTED (KL)	fldte > 1	Fine leak	Pass/Fail	
24	DDPTEKU = -1.464hPa	pttrk < DDPTEKU	EVAP Canister Purge Valve leaking (seat)	Pass/Fail	
25	DDPTEAV = -1.464hPa	pttr > DDPTEAV	EVAP Canister Vent Solenoid Valve blocked	Pass/Fail	
11	TTEDWU = 20s	Tdteudw > TTEDWU	EVAP Canister Vent Solenoid Valve blocked (residual vacuum)	Pass/Fail	
12	TTEDOZG = 20s	tdteozg > TTEDOZG	Fuel Tank Pressure Sensor	Pass/Fail	
13	TTEDST = 2.5s	tdteab > TTEDST	Fuel Tank Pressure Sensor	Pass/Fail	
26	DDPTETV = -15.62hPa	pttr < DDPTETV	EVAP Canister Purge Valve seat leakage	Pass/Fail	
27	GGRTED = 0.305hPa/s	gudauf < GGRTED	Large leak (low vacuum build up)	Pass/Fail	
23	DPTEAAV = -14.64hPa	pte < DPTEAAV	EVAP Canister Vent Solenoid Valve blocked	Pass/Fail	

EVAP System - Vehicles with 0.020" (0.5mm) Leak Detection System

EVAP Canister Purge Valve

DATA 3 (TC6TESC):	Bit 0 - 6: Number of the measuring path within the TID = CID. Bit 7: Type of test limit: 0 = Test limit is maximum value. Test fails if test value > test limit 1 = Test limit is minimum value. Test fails if test value < test limit
DATA 4+ 5 (TC6TESW)	2- byte value of the measured value
DATA 6+ 7 (TC6TESS):	2- byte value of the threshold value

	J1979 Mode \$06 Data				
CID \$ [h]	Fault Simulation	Test Value: Threshold	Indicated Fault	Display	
01	B_dteabbv 0 à 1	dfrdte < DFDTEF	EVAP Canister Purge Valve – Oxygen Sensor control rich threshold	Pass/Fail	
01	B_dteabbv 0 à 1	dfrdte > DFDTEM	EVAP Canister Purge Valve – Oxygen Sensor control lean threshold	Pass/Fail	
0F	B_minflr 0 à 1	dqsdte < DQSTED	Change of Idle Speed Control Actuator air not great enough	Pass/Fail	

DMTL Module

DATA 3 (m6cddmtl):

tl): Bit 0 - 6: Number of the measuring path within the TID = CID.

Bit 7: Type of test limit:

0 = Test limit is maximum value. Test fails if test value > test limit

1 = Test limit is minimum value. Test fails if test value < test limit

DATA 4+ 5 (m6wddmtl_w): 2- byte value of the measured value

DATA 6+ 7 (m6sddmtl_w): 2- byte value of the threshold value

	J1979 Mode \$06 Data			
CID \$ [h]	Test Value: Threshold	Indicated Fault	Display	
12	iptref_w < IPTREFU	DMTL module failure – minimum	Pass/Fail	
17	nkfl > NKLDIPFMX	Signal fault – Current fluctuations	Pass/Fail	
13	iptref_w > IPTREFO	DMTL module failure – maximum	Pass/Fail	
14	iptumv_w > iptsumv_w	DMTL valve not switched over	Pass/Fail	
21	iptgl_w < iptsgl_w	Large leak detected	Pass/Fail	
18	iptglv_w < iptsglv_w	Large leak detected after extended detection time	Pass/Fail	
16	iptkl_w < iptref_w	Small leak detected	Pass/Fail	

TID \$06

O2 Sensor heating Not supported – continuous monitor

TID \$07

Catalyst heater Not fitted

TID \$08

Camshaft shift Not fitted

Thermostat Diagnosis

DATA 3 (m6cthm): Bit 0 - 6:Number of the measuring path within the TID = CID. Bit 7: Type of test limit: 0 = Test limit is maximum value. Test fails if test value > test limit 1 = Test limit is minimum value. Test fails if test value < test limit

DATA 4 + 5 (m6wthm): 2- byte value of the measured value

DATA 6 + 7 (m6sthm): 2- byte value of the threshold value

	J1979 Mode \$06 Data			
CID \$	Test Value: Threshold	Indicated Fault	Display	
0A	dthmtmka < DTHMDTKA	Temperature difference too small	Pass/Fail	

J1979 Mode \$06 Data – Parameter Descriptions			
Parameter	Description		
AHKAT	Mean value of the amplitude sensor signal post catalyst corrected by KB, Bank A		
AHKAT2	Mean value of the amplitude sensor signal post catalyst corrected by KB, Bank B		
AHKATMX	Threshold value catalyst defect, AHKAT >AHKATMX		
AHKATS	Threshold value for sum AHKAT, AHKAT2 (stereo)		
AHKATSB	Threshold value for error of adding range (stereo)		
AHKTMXT	Threshold value catalyst defect at tester's request		
AIOSLS	Number of correct measurements at Secondary Air Injection diagnosis, Bank A		
AIOSLS2	Number of correct measurements at Secondary Air Injection diagnosis, Bank B		
B_FAKAT	Condition function request catalyst monitoring, Bank A		
B_FAKAT2	Condition function request catalyst monitoring, Bank B		
B_SZKAT	Cycle time and error bank A run out		
B_SZKAT2	Cycle time and error bank B run out		
CDSLS	Code word secondary air system in OBDII mode (inv: Europe mode)		
DDPTEAV	Pressure difference for detection of clogged EVAP Canister/Shut-off Valve		
DDPTEKU	Maximum pressure decrease for compensation gradient		
DDPTETV	Pressure difference for detection of open EVAP Canister Purge Valve		
DFDTEF	Delta Fr threshold 'rich correction' for check OK		
DFDTEM	Delta Fr threshold 'lean correction' for check OK		
DFRDTE	Delta factor lambda control for EVAP Canister load test		
DFRMFC	Threshold control factor change for flow check at Secondary Air Injection diagnosis		
DFRMSLA	Delta of Lambda control factor and Reference value for diagnosis Secondary Air Injection, Bank A		
DFRMSLA2	Delta of Lambda control factor and Reference value for diagnosis Secondary Air Injection, Bank B		
DFRMSLV	Threshold for control factor change for valve check at Secondary Air Injection diagnosis		
DPTEAAV	Pressure threshold for EVAP Canister Vent Solenoid Valve failure detection		
DQSDTE	Change of Idle Speed Control Actuator air during EVAP Canister Purge Valve opening		
DQSTED	Delta air for TE diagnosis o.k. (Idle Speed Control Actuator air test)		
DTHMDTKA	Threshold temperature difference TMOT to TKA for detection of faulty thermostat		
DTHMTMKA	Delta between Engine Coolant and Radiator Outlet water temperature in diagnosis thermostat		
FLDTE	Leakage factor of leak diagnosis		
GGRTED	Gradient threshold for detection of DMTL rough leak		
GUDAUF	Vacuum built-up gradient		
IPTGL_W	DMTL Pump motor current at the end of rough leak detection		
IPTGLV_W	DMTL Pump motor current at the end of extended rough leak detection		

J1979 Mode \$06 Data – Parameter Descriptions			
Parameter	Description		
IPTKL_W	DMTL Pump motor current at the end of smallest leak detection		
IPTREF_W	DMTL Pump motor current with reference leak		
IPTREFO	Upper limit of DMTL pump current during reference measurement		
IPTREFU	Lower limit of DMTL pump current during reference measurement		
IPTSGL_W	DMTL Pump motor current threshold at rough leak detection		
IPTSGLV_W	DMTL Pump motor current threshold at extended rough leak detection		
IPTSUMV_W	DMTL Pump motor current threshold at DMTL valve check		
IPTUMV_W	DMTL Pump motor current at DMTL valve check		
M6CDDMTL	Mode 6 – Memory: Component ID for DMTL tank leakage detection		
M6CTHM	Mode 6 – Memory: Component ID for thermostat monitoring		
M6SDDMTL_W	Mode 6 – Memory: Threshold value for DMTL tank leakage detection		
M6STHM	Mode 6 – Memory: Threshold value for thermostat monitoring		
M6WDDMTL_W	Mode 6 – Memory: Measured value for DMTL tank leakage detection		
M6WTHM	Mode 6 – Memory: Measured value for thermostat monitoring		
NKLDIPFMX	Upper limit of stop DMTL smallest leak detection in case of motor current fluctuation		
PTE	Fuel Tank pressure (from ADC)		
PTTR	Reference value of differential Fuel Tank pressure		
PTTRK	Fuel Tank pressure for measurement of compensation gradient		
TC6KATC	Output code SCAN-tool mode 6 from catalyst diagnosis		
TC6KATS	Output threshold SCAN-tool mode 6 from catalyst diagnosis		
TC6KATW	Output test threshold SCAN-tool mode 6 from catalyst diagnosis		
TC6MTLC	Output code SCAN tool mode 6 from DMTL diagnosis		
TC6MTLS	Output threshold SCAN-Tool mode 6 from DMTL diagnosis		
TC6MTLW	Output check value SCAN tool mode 6 from DMTL diagnosis		
TC6SLSC	Output code SCAN-Tool mode 6 from Secondary Air Injection diagnosis, Bank A		
TC6SLSC2	Output code SCAN-tool mode 6 from Secondary Air Injection diagnosis, Bank B		
TC6SLSS_W	Output threshold value SCAN-Tool mode 6 from Secondary Air Injection diagnosis, Bank A		
TC6SLSS2	Output threshold SCAN-tool mode 6 from Secondary Air Injection diagnosis, Bank B		
TC6SLSW_W	Output check value SCAN-Tool mode 6 from Secondary Air Injection diagnosis, Bank A		
TC6SLSW2_W	Output check value SCAN-tool mode 6 from Secondary Air Injection diagnosis, Bank B		
TC6TESC	Output code SCAN tool mode 6 from EVAP Canister Purge control diagnosis		
TC6TESS	Output threshold SCAN tool mode 6 from EVAP Canister Purge control diagnosis		
TC6TESW	Output check value SCAN tool mode 6 from EVAP Canister Purge control diagnosis		
TDTEAB	Time for detection of "broken hose"		

J1979 Mode \$06 Data – Parameter Descriptions						
Parameter	Description					
TDTEGR	Maximum time for detection of DMTL rough leak					
TDTEOZG	Timer for rationality check of Fuel Tank Pressure Sensor					
TDTEUDW	Time for Fuel Tank pressure signal at lowest value					
TKA	Radiator Outlet Temperature					
TMOT	ECT					
TTEDOZG	Overall test time for rationality check of Fuel Tank Pressure Sensor					
TTEDST	Time for monitoring of Fuel Tank Pressure Sensor					
TTEDWU	Waiting time if Fuel Tank Pressure Sensor at lower limit					
ZIOSLS	Counter for good diagnosis tests of Secondary Air Injection System					
ZIOSLS2	Counter for good diagnosis tests of Secondary Air Injection System					

4 Onboard Monitoring

4.1 Catalyst Monitoring

4.1.1 Description

Catalyst monitoring is based on the monitoring of oxygen storage capability. The engine closed loop feedback control generates Lambda* (air fuel ratio) oscillations in the exhaust gas. These oscillations are damped by the oxygen storage activity of the catalyst. The amplitude of the remaining Lambda oscillations downstream of the catalyst indicates the storage capability.

In order to determine catalyst efficiency, the amplitude ratio of the signal oscillations of the upstream and downstream Lambda sensors is determined. This information is evaluated separately in different engine load and speed ranges. If there is an indication of low storage capability in a certain number of operating ranges, a defective catalyst is diagnosed.

*Definition of Lambda: The stoichiometric air fuel ratio is the mass ratio of 14.7 kg of air to 1kg of gasoline theoretically necessary for complete combustion. The excess air ratio ς (Lambda) indicates the deviation of the actual air fuel ratio from the theoretical air fuel ratio. Thus ς = actual inducted air mass/ theoretical air requirement

4.1.2 Monitoring Structure

Computation of the Amplitude Ratio

The first step is the computation of the amplitude of the signal oscillations of the oxygen sensors upstream and downstream of the catalyst. This is accomplished by extracting the oscillating signal component, computing the absolute value and averaging over time. The result of dividing the downstream amplitude value by the upstream amplitude value is called the Amplitude Ratio (AV). This AV value is the basic information necessary for catalyst monitoring. It is computed continuously over a certain engine load and speed range. The signal paths for both sensor signals are identical, so that variations, like an increase in the control frequency, affect both signal paths in the same way and are compensated for by the division.

Post Processing

The actual amplitude ratio is compared with a limit value according to the load and speed range the engine is operating in. The result of this comparison, which is the difference of the two values, is accumulated separately for each range. Thus, even short time periods of driving in a certain range yield additional information.

By using separate load and speed ranges in combination with the accumulation of information a monitoring result can be obtained during a Federal Test Procedure (FTP) cycle.

Fault Evaluation

The accumulated information about the amplitude ratio becomes more and more reliable as different load and speed ranges are used during a driving cycle. If the amplitude ratio is greater than fixed map values a fault is detected and an internal fault flag will be set. If the fault is detected again in the next driving cycle the MIL will be illuminated.

Since the monitored engine has a catalyst for each of two cylinder banks, two evaluations are made with differing fault thresholds, one test is for deterioration in one of the catalysts and the second is at a reduced threshold to check for deterioration in both catalysts.

Check of Monitoring Conditions

The monitoring principle is based on the detection of relevant oscillations of the downstream oxygen sensor signal during regular Lambda control. It is necessary to check the driving conditions to ensure that regular lambda control is possible, e.g. fuel cut off not present. For a certain time after enabling Lambda control, the computation of the amplitude values and their post processing is halted, in order to avoid a distortion of the monitoring information.

4.1.3 Block Diagram of system Operation

Catalyst Monitoring Operation – Discovery Series II										
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination		
Catalyst					engine speed	1200 < rpm < 1800	100 sec/	two driving		
Bank 1	P0420	oxygen	rear oxygen sensor	> 0.4023	engine load	between 1.8 and	once per	cycles		
		storage	amplitude exceeds the			3.8 msec at 1200	driving			
		capability	modelled amplitude of			Rpm to between 1.9	cycle			
			a borderline catalyst			and 4.15 msec at				
			(1.75 x standard			1800 rpm				
			(Hydrocarbon - (HC)		catalyst temperature (model)	> 332 °C				
			emissions))		transfer gears	high range				
Bank 2	P0430			> 0.4023	fuel system status	closed loop				
					EVAP canister purge vapour factor	< 10.0				
					enable conditions	valid for > 0.8 sec				

If the above table does not include details of the following enabling conditions: - IAT, ECT, vehicle speed range, and time after engine start-up then the state of these parameters has no influence upon the execution of the monitor.

Catalyst Monitoring Operation – Range Rover 38A										
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination		
Catalyst	P0420	oxygen	amplitude ratio of	> 0.5	engine speed	1000 < rpm < 2800	250 sec/	two driving		
Banks 1 and 2	P0430	storage	O2S, rear/front	(min. 4 of 4	engine load	1.2< TL msec <4.0	once per	cycles		
(Dual catalyst		capability	(1.5 x standard + 4K	samples per	catalyst temperature (model)	> 300 °C	driving			
deterioration)			(HC emissions))	cylinder bank)	IAT	> -9.75 °C	cycle			
Bank 1 or 2				> 0.75	transfer gears	high range				
(Single				(min. 4 of 4	fuel system status	closed loop				
catalyst				samples for one	EVAP canister purge vapour factor	< 10.0				
deterioration)				cylinder bank)	time after start	> 69.12 sec				

If the above table does not include details of the following enabling conditions: - IAT, ECT, vehicle speed range, and time after engine start-up then the state of these parameters has no influence upon the execution of the monitor.

4.2 Misfire Monitoring

4.2.1 Description

The method of engine misfire detection is based on evaluating engine speed fluctuations.

In order to detect misfiring in any cylinder, the torque of each cylinder is evaluated by recording the time between two ignition events; this is a measure of the mean value of the speed for this angular segment. Since a change in the engine torque results in a change of the engine speed. Additionally, the influence of the load torque at the wheels needs to be determined. This is to take account of the influences of different road surfaces, e.g. pavement, pot holes etc.

If the mean engine speed is measured, influences caused by road surfaces have to be eliminated.

This method consists of the following main parts:

- *e* Data acquisition, including adaptation of the sensor wheel.
- *∉*[#] Calculation of engine roughness.
- *e*# Comparison with a threshold, which depends on the operating conditions.
- *e*# Identification of extreme conditions, during which misfire detection cannot be enabled due to a risk of falsely detecting misfire.
- *∉*[#] Fault processing, counting procedure of single misfire events, recording of any diagnostic trouble codes and MIL illumination.

4.2.2 Monitoring Structure

1. Data Acquisition

The duration of the crankshaft segments is measured continuously for every combustion cycle.

2. Crankshaft Position Sensor Wheel Adaptation

Within a defined engine speed range and during fuel cut-off, the adaptation of the crankshaft position sensor wheel tolerances is performed. As the adaptation process progresses, the sensitivity of the misfire detection is increased. The adaptation values are stored in non-volatile memory and are taken into consideration during the calculation of the engine roughness.

3. Misfire Detection

The following steps are performed for each measured segment, corrected by the appropriate crankshaft position sensor wheel adaptation.

3.1 Calculation of the engine roughness

The engine roughness is derived from the differences of the segment durations. Different statistical methods are used to distinguish between normal changes of the segment duration and any changes due to misfiring.

3.2 Detection of multiple misfiring

If several cylinders are misfiring (e.g. alternating one combustion/one misfire event), the calculated engine roughness values may be so low, that the threshold is not exceeded during misfiring and, therefore, misfiring would not be detected.

Based on this fact, the periodicity of the engine roughness value is used as additional information during multiple misfiring. The engine roughness value is filtered and a new multiple filter value is created. If this filter value increases due to multiple misfiring, the roughness threshold is decreased. By applying this strategy, multiple misfiring can be detected.

3.3 Calculation of the engine roughness threshold value

The engine roughness threshold value consists of the base value, which is determined from a load and speed dependent map. During warm-up an ECT dependent correction value is added. For multiple misfiring the threshold is reduced by an adjustable factor. Before sufficient crankshaft position sensor wheel adaptation has occurred, the engine roughness threshold is limited to a speed dependent minimum value. A change of the threshold towards a smaller value is limited by a variation constant.

4.0 Determination of misfiring

Misfire detection is performed by comparing the engine roughness threshold with the engine roughness value.

4.1 Statistics, fault processing

Within an interval of 1000 crankshaft revolutions the detected misfire events are summed for each cylinder. If the sum of all cylinder misfire incidents exceeds a predetermined value, the preliminary diagnostic trouble code for emission relevant misfiring is stored. If only one cylinder is misfiring, a cylinder selective diagnostic trouble code is stored. If more than one cylinder is misfiring, the diagnostic trouble code for multiple misfiring is also stored. If the misfire is again detected on a subsequent drive cycle, then the MIL is illuminated and the appropriate diagnostic trouble code is stored.

Within an interval of 200 crankshaft revolutions the detected number of misfiring events is weighted and calculated for each cylinder. The weighting factor is determined by a load and speed dependent map.

If the sum of cylinder misfire incidents exceeds a predetermined value the diagnostic trouble code for indicating catalyst damage relevant misfiring is stored and the MIL is illuminated at once (flashing).

If the cylinder selective count exceeds the predetermined threshold the following measures are instituted:

- *e*# The oxygen sensor closed loop system is switched to open loop.
- *e*[#] The appropriate cylinder selective DTCs is/are stored.
- *e* If more than one cylinder is misfiring, the DTC for multiple misfire is also stored.

All misfire counters are reset after each interval.

4.2.3 Fault Processing for Emissions Relevant Misfire

Misfire Monitoring Operation - Discovery										
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination		
Misfire	P0301	crankshaft	Federal Test	> 1.875 %/ 1000 revolutions	engine speed	520 < rpm < 5400	1000 revolutions	two driving		
	to	speed	Procedure (FTP)		load change	< 1.20 ms/rev	up to twice in	cycles		
	P0308	fluctuation	emissions		(after start)	(< 130.8 ms/rev)	one drive cycle/			
	P0300	multiple misfire	Threshold		speed change	< 4000 rpm/sec	continuous			
	P1300				(after start)	(< 20 000 rpm/sec)				
			catalyst damage	8.6 to 16.8 % at 600 rpm	engine load	Positive	200 revolutions/	immediately		
				7.4 to 14.6 % at 1000 rpm	rough road (ABS)	not set	continuous			
				2.0 to 10.7 % at 2000 rpm	gear change	not active				
				1.9 to 9.9 % at 3000 rpm	traction control	not active				
				1.8 to 8.3 % at 4000 rpm	transfer gears	high range				
				1.8 to 5.0 % at 5000 rpm	re-enablement	20 revolutions				
					delay (not active					
					after engine start)					

If the above table does not include details of the following enabling conditions: - IAT, ECT, vehicle speed range, and time after engine start-up then the state of these parameters has no influence upon the execution of the monitor.

Misfire Monitoring Operation – Range Rover										
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination		
Misfire	P0301	crankshaft	FTP emissions	> 2.0 %/ 4000 ignitions	engine speed	520 < rpm < 5400	1000 revolutions/	two driving		
	to	speed	threshold		load change	< 0.10 ms/ignition	continuous	cycles		
	P0308	fluctuation	catalyst damage		speed change	< 720 rpm/sec	200 revolutions/	immediately		
	P0300	multiple	4.0 litre	4.0 % to 15.9 %	engine load	positive	continuous			
	P1300	misfire	4.6 litre	3.8 % to 19.3 %	rough road (ABS)	not set				
				for the speeds and loads	traction control	not active				
				encountered during the FTP	transfer gears	high range				
					time after start	> 5.0 sec				

Misfire Monitoring Operation – Range Rover									
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination	
	P1319	low fuel level check	Fuel level	< 15%	misfire detection status	diagnostic trouble code stored	Immediately/ continuous	immediately	

If the above table does not include details of the following enabling conditions: - IAT, ECT, vehicle speed range, and time after engine start-up then the state of these parameters has no influence upon the execution of the monitor.

4.3 Secondary Air Injection System Monitoring

4.3.1 Description

The secondary air injection system consists of an electric pump that is controlled by the ECM via a relay. Air is supplied by the pump to two vacuum operated control valves, one per cylinder bank. From each of the control valves air is delivered to the exhaust ports of the centre two cylinders of each cylinder bank. The vacuum signal is switched via an ECM controlled solenoid valve. A vacuum reservoir ensures that there is always sufficient depression to operate the control valves.

Diagnosis of the secondary air injection system can take place in two steps. There is a passive diagnostic which checks for a lean shift in the signals from the front oxygen sensors during secondary air injection operation and there is an active check, which only runs if the passive check fails to achieve sufficient test results in any drive cycle. The active test has two parts; firstly the secondary air injection pump will be run with the control valves shut. If the valves are leaking or stuck open, the feedback fuelling will shift lean and a fault will be detected. If the valve check is passed, then the valves will be opened and if sufficient secondary airflow exists, then the fuelling will be shifted lean. If the lean shift is less than the required threshold, then a fault is stored.

Additionally, a total absence of secondary injection airflow does not cause the vehicle to exceed the appropriate monitoring threshold. Therefore the system only requires a functional check for the presence of secondary air.

Passive Secondary Air Injection Diagnostic

For this test to run the front O2 sensors must have been ready for operation for longer than a certain time, the secondary air injection system must be operating, the engine speed and load must be within a pre-determined window, engine airflow must be less than an altitude dependent threshold and the ECT must be greater than a threshold.

The front O2 sensors are monitored over a time period and the minimum voltage value recorded. When a second timer expires, a test counter is incremented and the minimum sensor value is compared with a threshold. If the voltage is less than the threshold then a counter of good test results is incremented. When the test counter reaches a threshold, the number of good test results is compared with a limit value. If the number of good results is greater than the limit then the Secondary Air Injection system is functioning correctly, otherwise a fault is stored and the MIL is illuminated on the next drive cycle, if the fault is again present.

Active Secondary Air Injection Diagnostic

If on any drive cycle during which secondary air injection operation has occurred, there are insufficient passive diagnostic test results for fault determination. The system will then attempt to perform an active check of the secondary air injection system. For an active test to occur, the vehicle must be at rest with the engine idling, feedback fuel control enabled, below an altitude threshold, with the engine having been running for longer than a pre-determined time and secondary air injection not operating. If the EVAP canister purge is operating, then it will be ramped down to zero.

The active test is in two parts. First the current feedback correction factor is recorded and the secondary air injection pump turned on, but with the control valves shut. If the fuelling enriches by more than a threshold, then the valves are leaking or stuck open, but if after a timer has elapsed the feedback correction is below the threshold, then the system proceeds with a flow check.

For the second part of the active diagnostic the valves are opened and if after a time limit, the feedback has not enriched the fuelling by more than a second threshold, then a problem exists with the system and if it is present again on a subsequent drive cycle, a fault is stored and the MIL illuminated.

4.3.2 Passive Secondary Air Injection Diagnostic Monitoring Structure

4.3.3 Active Secondary Air Injection Diagnostic Monitoring Structure

Secondary Air Injection System Monitoring Operation										
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination		
Secondary	P0418	circuit continuity	voltage - drive on	voltage > 1/2 * Battery positive	engine speed	> 80 rpm	immediately/	two driving		
Air Injection		 short to battery positive 			battery voltage	7.5V < B+ < 17V	continuous	cycles		
Pump Relay		circuit continuity	voltage - drive off	voltage < 1/3 * Battery positive						
		- short to ground								
		circuit continuity	voltage - drive off	1/3 * Battery positive< voltage						
		- open circuit		< 2/3 * Battery positive						
Secondary	P0412	circuit continuity	voltage - drive on	voltage > 1/2 * Battery positive	engine speed	> 80 rpm	immediately/	two driving		
Air Injection		 short to battery positive 			battery voltage	7.5V < B+ < 17V	continuous	cycles		
Valve	P0414	circuit continuity	voltage - drive off	voltage < 1/3 * Battery positive						
Vacuum	_	- short to ground								
Solenoid	P0413	circuit continuity	voltage - drive off	1/3 * B+ < voltage						
Drive		- open circuit	avatam is OK if	< 2/3 ^ Battery positive		E20 < mm < 2E20	11	tuo drivino		
Secondary		the front 025	system is OK II	< 0.501 V (for > 55 times	engine speed	520 < 1011 < 2520	14 Sec/ Once	two anving		
System		Minimum		in 80 Samples)	engine airflow	< 55.56 g/sec	cvcle	Cycles		
(Passive		value is sampled			ECT	> 8 °C	0,010			
Test)		over a time	and		front O2S	ready for operation				
Bank 1	P1412	of 0.100 sec .lf	bank 2 O2S Value	< 0.399 V (for > 55 times		for > 10.0 sec				
Bank 2	P1415	this value is		in 80 samples)	secondary air	operating				
		greater than			time after engine	< 655 sec				
		a threshold, then			start	> 0 744				
Cocordomi		the system is ok				> 0.711	10 5 222/	two driving		
Air Injection		run the	change in fuelling	- 0.05	engine state	– u mpn Idle				
System		secondary air	correction	0.05	secondary air	not operating but	driving cycle	Cycles		

			Secondary Air	Injection System Mo	nitoring Operat	tion		
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination
(Active Test)		injection pump with the control			injection	has operated this drive cycle		
Bank 1	P1413	valves shut and			fuel system	Closed loop		
Bank 2	P1416	monitor the			status			
		Fuelling			passive	not completed		
		Correction			secondary			
					air diagnostic			
		flow check:-			altitude factor	> 0.711		
Bank 1	P1414	if the valve	change in fuelling	< 0.08	time after engine	> 580 sec		
Bank 2	P1417	check is	correction		start			
		successful,			purge status	ramped to zero		
		continue running				& wait 3.0 sec		
		the pump, but			active test	> 0		
		with the valves			counter			
		open and						
		monitor the						
		Fuelling						
		correction.						

If the above table does not include details of the following enabling conditions: - IAT, ECT, vehicle speed range, and time after engine start-up then the state of these parameters has no influence upon the execution of the monitor.

4.4 Evaporative Emission System Monitoring – 0.040" (1.0mm) Diameter

4.4.1 Description

The evaporative emission system monitoring permits the detection of leaks in the fuel evaporative emission control system with a diameter of 0.040" or larger.

For this purpose, a system pressure check is performed at idle with the vehicle stationary. Since vapour generation in the fuel tank could cause the false detection of a system leak, the first step is to close the EVAP canister purge valve and EVAP canister vent solenoid valve. Any pressure build-up is then measured, so that later results can be compensated for this fuel evaporation effect.

The EVAP canister purge value is opened and the EVAP canister vent solenoid value is closed. With this procedure a vacuum in the tank is created, which is measured by the fuel tank pressure sensor.

If no vacuum is detected, a large leak is assumed and the diagnosis is halted. If a large lean correction of the oxygen sensor controller is detected during the vacuum build-up, then the check is also halted, since fuel vapour is present in the system due to a high EVAP canister loading and idle instability will occur if the test is continued.

At a pre-determined vacuum the EVAP canister purge valve is closed, and the system is now considered "closed". From the gradient of the vacuum decay and the previously measured fuel vapour generation pressure rise, the presence of a leak can be inferred. The decay of the vacuum gradient also depends on the fuel level in the tank. The fuel level is roughly derived from the gradients of the vacuum build-up and vacuum decay and this information is also used when determining if a leak is present.

4.4.2 Monitoring Structure

Typical fuel tank pressure characteristic during the diagnostic test

	Evaporative Emission System Monitoring – 0.040" (1.0mm) Diameter											
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination				
Evaporative	P0443	Circuit continuity	voltage - drive on	voltage > 1/ 2 * Battery positive	engine speed	> 80 rpm	immediately/	two driving				
Emission		- short to battery positive			battery voltage	7.5V < Battery positive < 17V	continuous	cycles				
Canister	P0445	Circuit continuity	voltage - drive off	voltage < 1/3 * Battery positive								
Purge Valve	P0444	 short to ground circuit continuity open circuit 	voltage - drive off	1/3 * B+ < voltage < 2/3 * Battery positive								
	P0440	Functional check – valve open or Leaking	fuel tank pressure during pressure compensation measurement for the EVAP Purge system check	< - 1.464 hPa	see evaporative emission system purge check		up to 24.5 sec/once per driving cycle	two driving cycles				
			fuel tank pressure at the end of the large system leak test	< - 15.62 hPa			up to 36.5 sec/once per driving cycle					
Evaporative Emission Purge System	P0455 P0442	vacuum check uses the EVAP canister vent solenoid valve & the fuel tank pressure sensor	large system leak (e.g. missing filler cap) small system leak ([−] 1mm)	vacuum build up gradient < 0.305 hPa/sec vacuum decay grad (pressure comp. grad. * comp. factor) > Threshold	EVAP canister purge vapour factor fuel tank pressure lambda control engine state battery voltage vehicle speed altitude factor intake air temperature engine load	< 5.0 m 15.13 hPa active idle ⁻ 11.0V Zero ⁻ 0.73 ⁻ -12.0 °C	up to 36.5 sec/once per driving cycle up to 41.5 sec/once per driving cycle	two driving cycles				
					fuel tank level	not empty						

	Evaporative Emission System Monitoring – 0.040" (1.0mm) Diameter											
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination				
					engine air flow rate ECT at engine start	m40.0 kg/hr -12.0 °C < start temp. < 65.25 °C						
					time after engine start	> 960 sec						
					transfer gears	high range						
Evaporative	P0449	circuit continuity	voltage - drive on	voltage > 1/2 * Battery positive	engine speed	> 80 rpm	immediately/	two driving				
Emission		 short to battery positive 			battery voltage	7.5V < Battery positive < 17V	continuous	cycles				
Canister	P0448	circuit continuity	voltage - drive off	voltage < 1/3 * Battery positive								
Vent		- short to ground		1/3* Battery positive <								
Solenoid	P0447	circuit continuity	voltage - drive off	voltage < 2/3*								
Valve		 open circuit 		Battery positive								
	P0446	functional	fuel tank pressure	tank pressure	see evaporative		up to 36.5					
		check	too low during	< - 1.464 hPa	emission purge		sec/once per					
		for a blocked EVAP canister	large system leak test		system check		driving cycle					
		vent solenoid	fuel tank pressure	tank pressure			20 sec/					
		valve	too low during	< - 14.64 hPa			once per					
			stabilisation				driving cycle					
			phase of EVAP									
			system check									
Fuel Tank	P0452	fuel tank	fuel tank pressure	< -28.30 hPa	transfer gears	high range	5.0 sec/	two driving				
Pressure		pressure signal	(min)				continuous	cycles				
Sensor	P0453	high/low	fuel tank pressure	> 29.52 hPa								
	D0451	sonsor	(IIIdX)	⁻ 15 13 hDo	transfor goars	high range	5.0 coc/	two driving				
	F 0431	functional check	reading	10.10 HF a	engine state	idle	once per	cycles				
			reading		FCT at engine start	m 35 25 °C	driving cycle	0,000				
	P0451	sensor functional check	filtered pressure reading	⁻ 15.13 hPa	transfer gears engine state ECT at engine start	high range idle m 35.25 °C	5.0 sec/ once per driving cycle	two driving cycles				

	Evaporative Emission System Monitoring – 0.040" (1.0mm) Diameter										
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination			
					time after start time for stabilisation	m 20.0 sec ⁻ 10.0 sec					

4.5 Evaporative Emission System Monitoring - 0.020" (0.5mm) Diameter

4.5.1 Description

The evaporative emission monitoring system used for the Discovery 2001MY onwards permits the detection of leaks with a diameter of 0.020" or greater. This is achieved by means of a pressure test of the system. This is performed by the DMTL, which is an electrically operated pump fitted to the atmospheric air intake of the EVAP Canister. From the 2002MY this unit contains an electric heater to prevent condensate formation.

The test proceeds in 2 stages:-

- ∉ # Reference Leak Measurement The pump operates against the reference restriction within the DMTL. The ECM measures the current consumption of the pump motor during this phase.
- Leak Measurement (see diagram below) The solenoid in the DMTL is operated in order to shut off normal purge airflow into the EVAP Canister. The pump can now pressurise the fuel tank and vapour handling system. The ECM again measures the current consumed by the pump motor and by comparing this with the reference current, determines if a leak is present or not. A high current indicates tight system and a low current indicates a leaking system.

Typical Pump Current

Evaporative Emission System Monitoring – 0.020'' (0.5mm) Diameter											
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination			
Evaporative	P0443	circuit continuity	voltage - drive on	voltage > 1/ 2 * Battery	engine speed	> 80 rpm	immediately/	two driving			
Emission		- short to battery positive		poolaro	battery voltage	7.5V < Battery positive < 17V	continuous	cycles			
Canister	P0445	circuit continuity	voltage - drive off	voltage < 1/3 * Battery							
Purge Valve		- short to ground		poolare							
	P0444	circuit continuity	voltage - drive off	1/3 * Battery positive < voltage <							
		- open circuit		2/3 * Battery positive							
Evaporative	P0441	functional check	feedback correction		engine state	Idle	15 sec/	two driving			
Emission		- no purge flow	factor	m 1.125	ECT at start	[−] -12.0 °C	once per	cycles			
Canister		detected. Open	<u>OR</u>	> 0.875	altitude factor	⁻ 0.7266	driving cycle				
Purge Valve		EVAP canister	<u>AND</u>		engine load	m2.80 msec					
		purge valve and	idle air flow change	m0.17 g/sec	engine air flow	m12.5 g/sec					
		check for feed-			vehicle speed	0 mph					
		back shift, if			speed fluctuation	m80 rpm					
		shift is within a			(time after start)	> 1000 sec					
		window, check			<u>OR</u>						
		for			(time after start	> 590 sec					
		stoichiometric			& mixture adapt.	complete					
		purge by			& purge factor	m3.0					
		monitoring idle			& ISC diagnostic)	complete					
		speed control.									
		If air flow has									
		not changed due									
		then a fault									
		exists									
Leak	P1451	circuit continuity	voltage - drive off	1/3 * Battery positive < voltage	engine speed	> 80 rpm	0.5 sec/	two driving			
Detection		- open circuit		< 2/3 * Battery positive	battery voltage	7.5V < Battery	continuous	cycles			

	Evaporative Emission System Monitoring – 0.020'' (0.5mm) Diameter											
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination				
Pump Power Stage		circuit continuity - short to ground circuit continuity - short to battery	voltage - drive off voltage - drive on	voltage < 1/3 * Battery positive > 3.998V	battery voltage	positive <17V m15.47V (max for pump	0.07 sec/ continuous					
		positive				control)						
Leak	P1483	circuit continuity	voltage - drive on	voltage > 1/2 * Battery positive	engine speed	> 80 rpm	immediately/	No MIL				
Detection		 short to battery positive 			battery voltage	7.5V < Battery positive< 17V	continuous	illumination				
Pump	P1482	circuit continuity	voltage - drive off	voltage < 1/3 * Battery positive				(leak				
Heater		- short to ground		1/2 * Pottony positivo <				detection				
Circuit	P1481	circuit continuity - open circuit	voltage - drive off	voltage				defaults to enabled)				
EVAP Canister Purge System		over-pressure system using an ECM driven Pump		2.0 Battory positive	ECM state engine state altitude factor	In After Run for > 3.0 sec At Rest ⁻0.7266		four driving cycles				
(Discovery only)	P1452	Pump hardware Fault	pump ref. current	< 15.002 mA	ECT at engine start ambient temp.	[−] 2.25 °C 0.0 °C < Amb						
	P1453	Pump hardware Fault	pump ref. current	> 40.002 mA	(calculated) EVAP canister	Temp < 40.0 °C < 3.0						
	P1450	Pump hardware Fault	pump current (during rough leak)	[−] ref current - 2.002 mA	purge vapour factor time after start vehicle speed battery voltage	⁻ 1200 sec 0 mph 10.94V < Battery positive <14.52V (for 3.0 sec)						

	Evaporative Emission System Monitoring – 0.020" (0.5mm) Diameter											
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination				
					fuel level in window transfer gears	15 % < fuel level < 85 % high range						
	P0455	rough leak Measurement	pump current at end of test stage 1 stage 2	< idle current + K1(ref. current - idle current) < ref. current + K2(ref current - idle current) K1 = 0.26 +/- 0.09 K2 = 0.52 +/- 0.13	soak time no gas cap removal (during test) no re-fuelling (during test)	⁻⁹⁰⁰⁰ sec change of pump current< -0.598 mA change of pump current > 0.598 mA	160 sec/ once per driving cycle					
	P0442	small leak Measurement	pump current	mreference Current	re-fuelling (prior to test) rough leak counter no gas cap removal (during test) no re-fuelling (during test)	detected ⁻ 14 change of pump current < -0.598 mA change of pump current > 0.598 mA	rough leak + 375 sec/ once per driving cycle					

4.6 Fuel System Monitoring

4.6.1 Description

Primary Mixture Control

The air mass taken in by the engine and the engine speed are measured. These signals are used to calculate an injection signal. This primary mixture control follows fast load and speed changes.

Lambda-control

The ECM compares the oxygen sensor signal upstream of the catalyst with a reference value and calculates a correction factor for the primary control.

Adaptive Control

Drifts and faults in the sensors and actuators of the fuel delivery system, as well as un-metered air leakage into the intake system influence the primary control. This causes deviations in the air to fuel ratio. The adaptive control determines the controller correction in two different ranges.

Range 1 - Additive Correction per time unit Range 2 - Multiplicative Correction

Lambda deviations in range 1 are compensated by an additive correction value multiplied by an engine speed term. By this means an additive correction per time unit is derived.

Lambda deviations in range 2 are compensated by a multiplicative factor.

Each value is determined only within its corresponding range. But each adaptive value corrects the primary control within the whole load and speed range of the engine. After the next start, the stored adaptive values are included in the calculation of the primary fuel control; just before closed-loop fuelling control is activated.

Abbreviations for the Fuel Delivery System:

- QU1 upper airflow threshold range 1
- NU1 upper engine speed threshold range 1

tra additive learning correction coefficient per time unit (range 1) TRADN lower diagnosis threshold of tra TRADX upper diagnosis threshold of tra TLARN upper engine load threshold f(n), range 2 QL2 lower airflow threshold range 2 TLL2 lower engine load threshold range 2 fra multiplicative learning correction coefficient (range 2) FRADN lower diagnosis threshold of fra FRADX upper diagnosis threshold of fra

Diagnosis of Fuel Delivery System

Faults in the fuel delivery system can occur which cannot be compensated for by the adaptive control. In this case the adaptive values leave a predetermined range. If the adaptive value is outside this predetermined range, and then if the condition is again present on a subsequent drive cycle, the MIL is illuminated and the appropriate diagnostic trouble codes are stored.

4.6.2 Monitoring Structure

	Fuel System Monitoring										
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination			
Fuel System		fuel trim limits exceeded			fuel system status ECT IAT transfer gears purge diagnosis	closed loop+part load > 80.25 °C m 69.75 °C high range not active		two driving cycles			
	P0171/2 P0174/5	bank 1 lean/rich bank 2 lean/rich	fra value (multiplicative correction) outside limit	> ± 22.7 %	engine speed engine load engine airflow rate	< 3800 rpm 2.0 < TL ms < 10.0 > 16.67 g/sec	10.0 sec				
	P1171/2 P1174/5	bank 1 lean/rich bank 2 lean/rich	tra value (additive correction) outside limit	> ± 0.452 ms /engine rev	engine speed engine airflow rate	< 960 rpm < 8.33 g/sec	8.0 sec				

4.7 Oxygen Sensor Monitoring

4.7.1 Description

The response rates of the upstream O2 sensors are monitored by measuring the period of the Lambda control oscillations. This period monitoring allows the detection of a slow O2 sensor.

4.7.2 Monitoring Structure

4.7.3 Oxygen Sensor Heater Monitoring Description

For proper functioning of an oxygen sensor, its element must be heated. A non-functioning heater delays the oxygen sensor's readiness for closed loop control and influences emissions.

The monitoring function measures both oxygen sensor heater current (voltage drop over a shunt) and the heater voltage (heater supply voltage), so that the oxygen sensor heater resistance can be calculated. If the oxygen sensor heater resistance is exceeds a minimum or maximum threshold an oxygen sensor heater fault is detected.

The monitoring function is activated once per drive cycle, as long as the heater has been switched on for a certain time period and the current has stabilized.

Characteristics:-

- *e* ECM controlled switching of the oxygen sensor heater.
- *e*# One shunt for each pair of oxygen sensors upstream and downstream of the catalysts for current measurement.

4.7.4 Oxygen Sensor Heater Monitoring Structure

The oxygen sensor heater resistance is calculated from the following equation:-

Resistance_{sensor heater} = $\frac{\text{Voltage}_{\text{battery}}}{\text{Voltage}_{\text{shunt}}} \Delta \text{Resistance}_{\text{shunt}}$

Oxygen Sensor Circuit Monitoring

Monitoring for electrical faults in the oxygen sensors both upstream and downstream of the catalyst.

Implausible voltages:

- ^{##} Analogue to Digital Converter (ADC) voltages exceeding the maximum threshold VMAX are caused by a short circuit to battery positive.
- ADC voltages falling below the minimum threshold VMIN are caused by a short circuit of the oxygen sensor signal or oxygen sensor ground to the ECM ground.
- An open circuit of the oxygen sensor can be detected if the ADC voltage remains within a specified range after the oxygen sensor has been heated for a certain time.

			Оху	gen Sensor Monitoring	g – Discovery Seri	es II		
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold Value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination
Oxygen Sensor (front)	P0133/53	response rate	oxygen sensor signal period (over 50 periods)	> 2.2 sec	engine speed engine load catalyst temperature (model) IAT EVAP canister purge status transfer gears	1400< rpm <2600 2.0< TL msec <5.0 > 340 °C m 65.25 °C Off <u>or</u> on > 20 sec high range	immediately/ once per driving cycle	two driving cycles
	P1170/73	sensor ageing	rich shift delay Time	< -1.0 or > 1.0 sec	O2S post catalyst control transfer gears	active high range	30 sec	
	P1129	exchanged oxygen sensors connector	fuel control factor <u>or</u>	bank 1 > 1.22 and bank 2 < 0.77 bank 1 < 0.77 and bank 2 > 1.22			8.0 sec	
					heater on transfer gears	> 90 sec high range		
	P0134/54	O2S circuit continuity	voltage <u>or</u> voltage (front & rear)	0.399V < voltage <0.598V voltage > 0.199V	over run fuel cut off	> 3.0 sec	15 sec/continuous 0.1 sec/continuous	
	P0132/52	range check (high)	voltage	voltage > 1.081V			5.1 sec/continuous	
	P0130/50	O2S short circuit	voltage	voltage < 0.0399V	O2S post catalyst voltage	⁻ 0.501V	20 sec/continuous	
				<u>Or</u>	ECT battery voltage time after start ECT at power down	< 39.75 °C > 8.016V > 1.0 sec > 60 °C	0.1 sec/continuous	
				0.062V m voltage < 0.399V	O2S post catalyst voltage	⁻ 0.501V	20 sec/continuous	

	Oxygen Sensor Monitoring – Discovery Series II										
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold Value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination			
				0.598V m voltage m 1.081V	O2S post catalyst voltage	< 0.102V	10 sec/continuous				
Heater	P0135/55	O2S heater current circuit continuity	calculated resistance voltage	resistance < 2.453 ô <u>or</u> resistance > 10.06 ô	after engine start up transfer gears	> 180 sec high range	10 sec/continuous				
Oxygen Sensor					O2S heater on transfer gears	> 90 sec high range		two driving cycles			
(rear)	P0140/60	O2S circuit continuity	voltage	0.399V < voltage < 0.501V			500 sec/ continuous	-			
F	P0138/58	range check (high)	voltage	voltage > 1.081V			5.1 sec/continuous				
	P0137/57	range check (low)	voltage	voltage < 0.501V	engine air flow O2S post catalyst control	> 16.67 g/sec Active	210 sec/ continuous				
	P0136/56	O2S short circuit	voltage	voltage < 0.0399	O2S post catalyst control	Active	200 sec/ continuous				
	P0139/59	oscillation capability check			O2S post catalyst control catalyst temperature (model) engine air flow rear O2S ready for at least rear O2S heater test	Active > 300 °C > 13.89 g/sec 30.0 sec completed successfully					
					rear O2S rich & lean flags not set	> 120 sec					
			if rear O2S voltage not [−] 0.625V for	enrichment request still present after 25 sec	catalyst temperature (model)	> 300 °C	2.0 sec/continuous				

Oxygen Sensor Monitoring – Discovery Series II											
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold Value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination			
			0.52 se c request enrichment								
			if rear O2S	rear O2S voltage	fuel system status	in over run fuel cut off (ORFCO) for	0.20 sec/				
			voltage not	> 0.200V		> 4.0 sec	continuous				
			m 0.625 V for		integrated engine air	> 35.0 g					
			0.52 sec		flow whilst in						
			wait for over		ORFCO						
			run fuel cut off		front O2S check	completed					
			(ORFCO)			successfully					
Heater	P0141/61	O2S heater	calculated	resistance < 2.453 ô	after engine start up	> 180 sec	10 sec/continuous				
		current	resistance	<u>or</u> resistance > 10.06 ô	transfer gears	high range					
		circuit	voltage								
		continuity									

	Oxygen Sensor Monitoring – Range Rover										
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold Value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination			
Oxygen Sensor (front)	P0133/53	response rate	O2S signal period (over 30 periods)	> 2.2 sec	engine speed engine load catalyst temperature (model) intake air temperature EVAP canister purge status	1400 < rpm < 2600 2.0 < TL msec < 5.0 > 340 °C m 69.75 °C off <u>or</u> on > 20 sec	Immediately/ once per driving cycle	two driving cycles			

	Oxygen Sensor Monitoring – Range Rover									
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold Value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination		
					transfer gears	high range				
	P1170/73	O2S ageing	rich shift delay time	< -1.0 or > 1.0 sec	O2S post catalyst control transfer gears	active high range	30 sec			
	P1129	exchanged O2S connectors	fuel control factor <u>or</u>	bank 1 > 1.22 and bank 2 < 0.77 bank 1 < 0.77 and bank 2 > 1.22	O2S heater on transfer gears	> 120 sec high range	8.0 sec			
	P0134/54	O2S circuit continuity	voltage <u>or</u> voltage (front & rear)	0.399V< voltage < 0.598V voltage > 0.199V	over run fuel cut off	> 3.0 sec	15 sec/continuous 0.1 sec/continuous			
	P0132/52	range check (high)	voltage	voltage > 1.081V			5.1 sec/continuous			
	P0130/50	O2S short circuit	voltage	voltage < 0.0399	O2S post catalyst voltage	>= 0.501V	20 sec/continuous			
				<u>Or</u>	ECT battery voltage time after start ECT at power down	< 39.75 °C > 8.016V > 1.0 sec > 80.25 °C	0.1 sec/continuous			
				0.062V m voltage< 0.399V	O2S post catalyst voltage	⁻ 0.501V	20 sec/continuous			
				0.598Vm voltage m 1.081V	O2S post catalyst voltage	< 0.102V	10 sec/continuous			
Oxygen Sensor (front) Heater	P0135/55	O2S heater current circuit continuity	calculated resistance voltage	resistance < 2.453 ô <u>or</u> resistance > 10.06 ô	after engine start up transfer gears	> 185 sec high range	10 sec/continuous	two driving cycles		
Oxygen Sensor	P0140/60	O2S circuit continuity	voltage	0.399V < voltage< 0.501V			500 sec/ continuous	two driving cycles		
(rear)	P0138/58	range check (high)	voltage	voltage > 1.081V			5.1 sec/continuous			
	P0137/57	range check (low)	voltage	voltage < 0.501V	engine air flow post-cat control	> 60 kg/hr Active	210 sec/ continuous			
	P0136/56	O2S short circuit	voltage	voltage < 0.0399	post-cat control	Active	100 sec/ continuous			

Oxygen Sensor Monitoring – Range Rover										
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold Value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination		
	P0139/59	oscillation capability check	if rear O2S voltage not [−] 0.625v for 0.52 sec request	enrichment request still present after 25 sec	O2S post catalyst control catalyst temperature (model) engine air flow rear O2S ready for at least rear O2S heater test rear O2S rich & lean flags not set catalyst temperature (model)	Active > 300 °C > 50 kg/h 30.0 sec completed successfully > 120 sec > 300 °C	2.0 sec/continuous			
Oxygen Sensor	P0141/61	O2S heater current	enrichment if rear O2S voltage not m 0.625v for 0.52 Sec wait for ORFCO calculated resistance	rear O2S voltage > 0.20V resistance < 2.453 ô <u>or</u> resistance > 10.06 ô	fuel system status integrated engine air flow whilst in ORFCO front O2S check after engine start up transfer gears	in ORFCO for>4.0sec > 35.0 grams completed successfully > 185 sec high range	0.20 sec/ continuous 10.0 sec/ continuous	two driving cycles		
(rear) Heater		circuit continuity	voltage		, , , , , , , , , , , , , , , , , , ,			-		

4.8 Thermostat Monitoring

4.8.1 Description

The diagnostic checks for a partially open thermostat, under conditions when the thermostat would be expected to be shut.

A second ECT sensor is installed in the outlet from the radiator. If the enablement criteria are met and the ECT is less than the normal thermostat opening temperature the diagnostic will run.

The diagnostic compares the difference between ECT and the radiator outlet temperature. This gives the temperature drop across the radiator.

If the temperature drop is less than a threshold, and there is flow across the radiator, this is caused by leakage through the thermostat.

4.8.2 Monitoring Structure

Thermostat Monitoring											
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold Value		Secondary Parameter	Enable Conditions	Time Required	MIL Illumination		
Thermostat	P0126	engine not	engine coolant	m 45°C @ -10	°C TKA	ECT sensor	complete	1.0 sec/	two driving		
stuck open		fully warm	temperature -	m 40 °C @ 0 °	C TKA	plausibility test		continuous	cycles		
		and	radiator	m 45 °C @ 10	°C TKA	ECT	< 81.75 °C				
		temperature	outlet temperature	m 30 °C @ 20	°C TKA	time after Start	> from 220 sec @				
		drop across	(TKA)	m 30 °C @ 30	°C TKA		40 °C TKA to 270 sec				
		the radiator		m 25 °C @ 40	°C TKA		@ -10 °C TKA				
		less than a		m 25 °C @ 50		engine Speed	> 400 rpm				
		threshold		m 25 °C @ 60	°C IKA	venicle Speed	> 15.54 mpn				
						URFCU					
						engine State	fiot late				
						almow alter start					
						FCT at start	_9 75 °C m start				
							temperature m 81 75°C.				
						transfer Gears	high Range				
Radiator	P1118	circuit	voltage					1.0 sec/	two drivina		
Outlet		continuity	resistance					continuous	cycles		
Temperature		range check		> 140.25	5 °C				, ,		
Sensor		(max)									
	P1117	range check		< -33.0	°C	intake air	> -32.25 °C				
		(min)				temperature					
Engine	P0116	checks for	power up check					7.54 sec/	two driving		
Coolant		higher than	engine coolant	> ECT at	stop	radiator outlet	< 39.75 °C	continuous	cycles		
Temperature		expected	temperature at	- (50.25 x Factor)		temperature at start					
Sensor		engine	start			absolute value of	< 9.75 °C				
High Sided		temperature.		intake air factor		(radiator outlet					
Rationality		Potential		temp at start		temperature at start					
Check		fault		-30 °C	0.9961	- intake air					
Range Rover		determined		-15 °C	0.9727	temperature at start)					
Only		by the Power		0 °C	0.9492	time after start	< 2.0 s				

Thermostat Monitoring											
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold Value		Secondary Parameter	Enable Conditions	Time Required	MIL Illumination		
		up check at engine start and confirmed by driving check		10 °C 15 °C 20 °C 25 °C 30 °C 35 °C 45 °C 55 °C 65 °C	0.9180 0.8984 0.8789 0.8477 0.8203 0.8516 0.7617 0.6758 0.3008	radiator outlet temperature at stop ECT at stop transfer gears	> -9.75 °C > 66.75 °C high range				
			driving check engine coolant temperature	> 102.0	⊃°C	engine load engine speed calculated ECT vehicle speed time after start intake air temperature radiator outlet temperature transfer gears	2.0 < TL msec < 4.0 1200 < rpm < 2120 -60.0 °C -40 km/h > 290 sec m60 °C m55.5 °C high range				

4.9 Engine Speed and Position Sensor (Crankshaft Sensor)

4.9.1 Description

This sensor is the most important sensor on the vehicle, without it the engine cannot run. There is no backup strategy or limp home facility should it fail. The sensor produces the signal which enables the ECM to determine the angle of the crankshaft, and the engine rpm. From this, the point of ignition, fuel injection, etc. is calculated. If the signal wires are reversed a 3° advance in timing will occur, as the electronics within the ECM uses the falling edge of the signal waveform as its reference/timing point for each tooth.

The reluctor is machined and has a tooth pattern based on 60 teeth at 6° intervals and 3° wide: two of the teeth are removed to provide a hardware reference mark which is 60 degrees before top dead centre No. 1 cylinder.

The sensor operates by generating an output voltage caused by the change in magnetic field, which occurs as the teeth pass in front of the sensor. The output voltage varies with the speed of the teeth passing the sensor; the higher the engine speed, the higher the output voltage. Note that the output is also dependent on the air gap between the sensor and the teeth (the larger the gap, the weaker the signal, the lower the output voltage).

There are two diagnostic checks on the output signal of this sensor: -

- 1. The hardware reference mark created by the missing teeth is outside the search window and the engine speed is greater than 500 rpm.
- 2. The hardware reference mark is outside the search window by more than one tooth and the engine speed is greater than 500 rpm.

The ECM transmits the engine speed to the automatic TCM using CAN, while all other control modules are hardwired.

Engine Speed and Position Sensor									
Component/ System	Fault Codes	Monitoring Malfunction Strategy Criteria		Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination	
Engine Speed	P0335	rationality	reference mark outside	> 2	engine	> 500 rpm	2 revolutions/continuous	two driving	
Sensor	P0336	CHECK	counted teeth – actual number of teeth	+ 1 tooth	speed		1 revolution/continuous	Cycles	

4.10 Camshaft Position Sensor

4.10.1 Description

This is a Hall effect sensor producing four pulses for every two engine revolutions. The sensing element is positioned between 0 and 2mm from the side of the cam gear wheel. The sensor is, in effect, a magnetically operated electrical switch, switching a battery supply level voltage on or off dependent on the position of the cam gear wheel with respect to the sensor.

The cam gear wheel has four slots machined in it enabling cylinder identification every 90°. The signal is used for cylinder recognition; enabling sequential fuel injection, knock control and cylinder identification for diagnostic purposes.

The system checks the camshaft position sensor signal at every software reference mark i.e., 54° before top dead centre (2 teeth after the reluctor 2nd missing tooth). A fault condition is recognised if the signal does not change state (high to low or low to high voltage) every crankshaft revolution.

	Camshaft Position Sensor									
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination		
Camshaft Position Sensor	P0340	rationality check	signal sequence	incorrect signal	crankshaft revolutions	> 100 revolutions	0.500 sec/ continuous	two driving cycles		

4.11 Engine Coolant Temperature Sensor

4.11.1 Description

This sensor is a temperature dependant resistor (thermistor), which is a Negative Temperature Co-efficient (NTC) type, i.e. resistance decreases with increasing temperature. The sensor forms part of a voltage divider chain with a pull up resistor within the ECM. The change in resistance relates to change in the ECT.

The sensor is vital to the correct running of the engine as a richer mixture is required at lower block temperatures for good quality starts and smooth running, leaning off as the temperature rises to maintain emissions and performance. Should the sensor fail there is a software ECT warm-up model which will supply a changing default value during the warm up stage of the engine, based upon IAT. After the software model reaches 60°C ECT, a fixed default value of 85°C is used. The model also forms part of the diagnostics for the ECT sensor, in conjunction with open and short circuit tests.

A fault condition is recognised if the ECM is powered up and the ECT sensor resistance exceeds a minimum or maximum threshold, or the difference between the ECT model and the temperature indicated by the ECT sensor is greater than a threshold.

Engine Coolant Temperature Sensor											
Component/	Fault	Monitoring Strategy	Malfunction Criteria Threshold Value		Secondary	Enable	Time	MIL			
System	Codes	Description			Parameter	Conditions	Required	Illumination			
Engine		circuit continuity	voltage				0.180 sec/	two driving			
Coolant	P0117	range check (min)	resistance	> 34.166 kô (-35.25°C)			continuous	cycles			
Temperature	P0118	range check (max)		< 70.96ô (139.5°C)							
Sensor	P0116	rationality check	difference to model	> -20.25°C			2.54 sec/				
		(temperature model =	temperature				continuous				
		<i>f</i> [IAT,									
		air mass, time])									

4.12 Mass Airflow Sensor and Intake Air Temperature Sensor

The MAF sensor is a combined MAF sensor and IAT sensor.

4.12.1 Mass Airflow Sensor

4.12.2 Description

Airflow is determined by the cooling effect of the intake air passing over a "hot film" element contained within the device. The higher the air flow the greater the cooling effect and the lower the electrical resistance of the "hot film" element. The signal from the device is then used by the ECM to calculate the MAF into the engine.

The measured airflow is used in determining the fuel quantity to be injected in order to maintain the stoichiometric air fuel ratio required for correct operation of the engine and exhaust catalysts. Should the device fail there is a software backup strategy that will be evoked once a fault has been diagnosed. A fault is detected if the MAF signal exceeds the maximum or minimum threshold for a given speed range or the difference between the calculated load and the actual MAF signal is too great.

	Mass Airflow Sensor											
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination				
Mass Airflow Sensor	P0102 P0103	range check (min) range check (max)	air flow verses engine Speed 4.0 litre 4.6 litre	<2.43 g/sec(@ 800 rpm) To 8.96 g/sec(@ 5000 rpm) >40.0g/sec to 224.5g/sec > 46.7g/sec to 248.9g/sec (1000 RPM to 5400 rpm)	engine speed	> 400 rpm > 200 rpm (for > 0.3 sec) > 200 rpm (for > 0.3 sec)	0.5 sec/ continuous 0.3 sec/ continuous	two driving cycles				
	P0101	rationality check (low/high)	comparison of calculated load (engine speed and throttle position) to actual MAF signal	adaptation factor (af) 1.5 < af < 0.35	engine speed engine load ECT	800< rpm< 4000 2 <tl msec<6.5<br="">> -9.75° C</tl>	immediately/ continuous					

4.12.3 Intake Air Temperature Sensor

4.12.4 Description

The IAT sensor is a temperature dependent resistor (thermistor), i.e. the resistance of the sensor varies with temperature. The thermistor is an NTC type element, which means that the sensor resistance decreases as the sensor temperature increases. The sensor forms part of a voltage divider chain with an additional resistor in the ECM. The voltage from this network changes as the sensor resistance changes, relating the IAT to the voltage measured by the ECM.

A fault is detected if the resistance of the sensor exceeds a minimum or maximum threshold.

	Intake Air Temperature Sensor										
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination			
Intake Air Temperature	P0113	circuit continuity range check (max)	voltage resistance	<82.7ô (>139.5°C)			0.20 sec/ continuous	two driving cycles			
Sensor	P0112	range check (min)		>29.9kô (<-35.25°C)	time after start engine load fuel system status	> 180 sec idle not in ORFCO (all above for > 10 sec)					

4.13 Knock Sensor

4.13.1 Description

The ECM uses active knock control, which serves to prevent engine damaging pre-ignition or detonation under all operating conditions enabling the engine to operate without additional safety margins. For the ECM to be able to determine the point at which a cylinder is pre-detonating, 2 piezo ceramic sensors are mounted on the engine block. Each sensor monitors all 4 cylinders in a bank (i.e. cylinders 1, 3, 5 & 7, and cylinders 2, 4, 6 and 8) by converting the engine block noise into a suitable electrical signal, which is then transmitted back to the ECM via a shielded cable. The signal is then processed within the ECM to identify the data that characterises knocking.

There are three knock sensor diagnostic checks during which a fault is detected if: -

- 1. The sensor signal is less than the minimum engine rpm dependant threshold.
- 2. The sensor signal is greater than the maximum engine rpm dependant threshold.
- 3. The error counter for the verification of knock internal circuitry is exceeded.

	Knock Sensor											
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold Value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination				
Knock Sensor		sensor	sensor		knock control	active (for at least 50	approximately	No MIL				
Bank 1	P0327	reference	reference	from <2.44 mV at 2000 rpm		engine revolutions)	20 engine	illumination				
Bank 2	P0332	voltage	voltage	to <25.02mV at 5200 rpm	engine speed	> 2200 rpm (and not	revolutions/					
Bank 1	P0328	check	(10 samples)	from>207.5mV at 2000 rpm		changing	continuous					
Bank 2	P0333			to >622.6mV at 5200 rpm		dynamically)						
	P0606	response	integrator output	< 3.51V	ECT	> 60 °C	approximately					
		to test	(3 samples)				740 engine					
		Signal					revolutions/					
		null test	integrator output	> 0.353V			continuous					
			(3 samples)									
		<u>OR</u>	integrator change	> 45.5V/sec								
			AND engine speed	< 4200 rpm								

4.14 Throttle Position Sensor

4.14.1 Description

The sensor is a variable resistor, which is used to determine the position of the throttle plate and the rate of change in its angle. A software strategy within the ECM enables the closed throttle position to be learnt, enabling the sensor to be fitted without the need for adjustment. The signal is used by the ECM as part of the transient fuelling strategy and to determine the closed throttle position for idle speed control, in conjunction with road speed.

The signal is not only checked for range (exceeds a minimum or maximum threshold), but also for plausibility against MAF. If the load-monitoring fault is stored, it is indicative of a blocked air filter or collapsed air intake duct etc. It is also probable that the altitude adaptation factor is incorrect under these conditions.

	Throttle Position Sensor										
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination			
Throttle	P0122	range check (min)	voltage	< 0.195V (3.9%)	engine speed	> 400 rpm	0.05 sec/	two driving			
Position	P0123	range check (max)		> 4.83V (96%)		(for > 2.0 sec)	continuous	cycles			
Sensor	P0101	rationality check	comparison of calculated load	adaptation factor	engine speed	800< rpm <4000	immediately/				
		(low/high)	(engine speed and throttle	1.5 < af < 0.35	engine load	2.0 <tl 6.5<="" msec<="" th=""><th>continuous</th><th></th></tl>	continuous				
			position) to actual MAF signal		ECT	> -9.75° C					

4.15 Engine Control Module Self Test

4.15.1 Description

The ECM performs a number of self-test integrity diagnostics on its internal hardware and software to check for faults. An error is detected if the ECM receives no CAN messages for at least 0.8 seconds, the calculated checksums at power down do not match the values stored in flash Electrically Erasable Programmable Read Only Memory (EEPROM) or the internal or external RAM fails a read/write test.

	Engine Control Module Self Test									
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination		
ECM	P0600	bus check	no CAN messages	> 0.800 sec			immediately/ continuous	two driving cycles		
	P0601	self check of ROM contents	invalid checksum		at power down		0.20/0.30 sec			
	P0603	external RAM check	fails read/write test]						
	P0604	internal RAM check	fails read/write test		at power up					

4.16 Fuel Level Sensor

4.16.1 Description

This input is required as part of the misfire detection system in order to record if a 'low fuel' situation was present when misfire was detected and logged as a fault. On Range Rover 38A the ECM is required to read an analogue fuel level input and determine the 'low fuel' condition from this signal. Discovery Series II had an active high digital input until 2000MY, at which point this input also became an analogue signal.

There are three fuel level input diagnostic checks, during which a fault is detected if: -

- 1. The input signal is less than a minimum voltage threshold.
- 2. The input signal is greater than a maximum voltage threshold.
- 3. The percentage difference between the fuel consumption calculated by the ECM and the change in the fuel tank level is greater than a threshold.

	Fuel Level Sensor										
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination			
Fuel Level Sensor	P0460	rationality check between the fuel consumption calculated by the ECM and the change in fuel tank level	calculated fuel consumption - change in fuel tank level	 < -21.5% <u>or</u> > 20.4% (37.6% if tank full, which is defined as tank level > 91.4%) 	total fuel used distance traveled transfer gears	> 21.5% > 0.62 miles high range	immediately/ continuous	no MIL illumination (leak detection			
	P0462 P0463	range check (min) range check (max)	voltage	< 0.49V > 4.294V			10.0 sec/ continuous	defaults to enabled)			

4.17 Vehicle Speed Signal

4.17.1 Description

The vehicle speed signal is transmitted from either the Self Levelling, Anti-lock Braking System (SLABS) or the ABS control module. This signal is then passed by the ECM to the automatic TCM via the CAN bus. The ECM has input diagnostics for this signal; the SLABS/ABS signal is compared to the vehicle speed signal on CAN from the automatic TCM, derived from the main gearbox output shaft speed; if the difference is greater than a threshold then a fault is detected.

	Vehicle Speed Signal									
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination		
Vehicle Speed Signal	P0501	plausibility check	difference to calculated speed	> 31.1 mph	vehicle speed	> 49.7 mph	10.0 sec/ continuous	two driving cycles		

4.18 Power Supplies

4.18.1 Description

The ECM requires a permanent battery level voltage supply and a switched battery level voltage supply. The switched voltage supply is controlled by the ECM via a relay based on the condition of the ignition switch input (key position 2). At "key off" the ECM will maintain the switched supply active until various internal self-checks have been completed.

There are three battery voltage plausibility checks during which a fault is detected if: -

- 1. The battery voltage supply is less than a minimum voltage threshold.
- 2. The battery voltage supply is greater than a maximum voltage threshold and a jump-start condition has not been detected.
- 3. The battery voltage supply is less than a voltage threshold 60 seconds after the engine has been started.

	Battery Voltage								
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination	
Battery	P0560	battery voltage	battery voltage	< 2.55V			immediately/	no MIL	
Voltage	P0562	plausibility checks	battery voltage	< 9.05V	time since engine start	> 60.0 sec	continuous	illumination	
	P0563		battery voltage	> 16.03V	jump start (vehicle speed = 0 and voltage > 15.0V)	not detected			

4.19 Rough Road signal

4.19.1 Description

The SLABS/ABS control module transmits a PWM signal indicating rough road for misfire detection disablement. The ECM has input diagnostics for this signal.

There are three plausibility checks of the PWM signal during which a fault is detected if: -

- 1. The PWM signal is greater than a threshold indicating an electrical short to battery positive.
- 2. The PWM signal is less than a threshold indicating an electrical short to ground.
- 3. The PWM signal is greater than 44.92% but less than 55.08% indicating an error with the SLABS/ABS control module.

	Rough Road Signal										
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold Value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination			
Rough	P1590	plausibility checking of the	PWM signal	44.92 % < signal < 55.08 %	ignition	on	2.0 sec/	no MIL			
Road	P1591	PWM signal from the anti-	PWM signal	signal < 10.16 %	engine state	not starting	continuous	illumination			
Signal	P1592	lock brake ECM	PWM signal	signal > 89.84%				(misfire defaults to enabled)			

4.20 Transfer Box Malfunction Indicator Lamp Request (Range Rover 38A Only)

4.20.1 Description

This input indicates to the ECM that there is an OBD relevant error within the transfer box control module. The ECM will illuminate the MIL and store the P1701 DTC whenever this signal is true. The ECM carries out an integrity check on this signal following an 'ignition on' condition as shown below and detects a fault if any of the following conditions are satisfied: -

- 1. The line voltage is high during the low test.
- 2. The line voltage is low during the high test.
- 3. The line voltage is in an undefined state, neither high nor low.

Ignition on Integrity Check Waveform

	Transfer Box Malfunction Indicator Lamp Request										
Component/ System	Component/ SystemFault CodesMonitoring Strategy DescriptionMalfunction 										
Transfer Box	P1701	MIL request from the			battery voltage	> 8.02V	5.5 sec/	two driving			
Functionality		transfer box control module					continuous	cycles			
(Range Rover	P1702	plausibility checking of	line voltage	undefined state	ignition	On	performed once				
Only)	Only) P1703 the link from the transfer line voltage high during low test reset counter = 0 at ignition on										
	P1708	box control module	line voltage	low during high test							

4.21 Air Conditioning System (Discovery Series II Only)

4.21.1 Description

The air conditioning system comprises of the Heating and Ventilation Control (Air Conditioning) Module (HeVAC), the air conditioning compressor and the condenser fans. The ECM controls the compressor clutch via a relay.

The control strategy of the relay features hysteresis to avoid the compressor clutch cycling while the engine is running. When there is a need for the compressor to be activated, the HeVAC module sends a request signal to the ECM, which in turn activates the compressor clutch relay. The condenser fan relay is controlled separately by both the ECM and the HeVAC module, and again, the control strategy features hysteresis to avoid the cooling fans cycling while the engine is running and the engine coolant and/or condenser temperatures fluctuate around a given threshold. When there is a need for condenser cooling for air conditioning performance the HeVAC module sends a request signal to the condenser fan relay. If there is a requirement for condenser cooling due to ECT, the ECM will send the request signal to the condenser fan relay.

When the HeVAC module requests air conditioning, the signal it sends to the ECM is through two binary switches, which sense the minimum and maximum refrigerant pressure and an evaporator thermostat. If the pressure or the temperature is below or above certain levels the binary switches will be open circuit and effectively disable the A/C request line to the ECM, which in turn will disengage the compressor clutch.

The air conditioning system is in standby mode if the HeVAC module is on and economy mode is not selected.

There are four diagnostic checks of the air conditioning system during which a fault is detected if: -

- 1. The A/C compressor clutch relay short circuit to battery positive, i.e. the driver voltage is greater than half the battery voltage when the driver is on.
- 2. The A/C compressor clutch relay short circuit to ground, i.e. the driver voltage is less than one third of the battery voltage when the driver is off.
- 3. The A/C compressor clutch relay is open circuit, i.e. the driver voltage is greater than one third of the battery voltage but less than two thirds of the battery voltage when the driver is off.
- 4. A/C has been requested when the system is not in standby mode, i.e. a signal rationality check.

	Air Conditioning System											
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold Value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination				
Air	P1538	circuit continuity -	voltage - drive on	voltage > 1/2 * Battery positive	battery voltage	7.5V < Battery positive < 17V	immediately/	no MIL				
Conditioning		short to battery positive					continuous	illumination				
System	P1537	circuit continuity -	voltage - drive off	Voltage < 1/3 * Battery positive								
		short to ground		1/3* Battery positive <								
	P1536	circuit continuity -	voltage - drive off	voltage < 2/3* Battery positive	engine speed	> 80 rpm						
	P1535	open circuit signal rationality check	A/C requested when not in standby mode				0.5 sec					

4.22 Fuel Injectors

4.22.1 Description

The engine is fitted with 8 fuel injectors (one per cylinder), each of which is directly driven by the ECM. The Injectors are fed from a common fuel rail as part of a return less fuel system, with the fuel rail pressure constant at 3.5 bar (52 psi). The Fuel Pressure Regulator is integral to the fuel pump module, within the fuel tank. There is no reference signal line to the intake manifold.

The ECM monitors the output power stages of the injector drivers for electrical faults. A fault is detected if any of the following conditions is satisfied: -

- 1. Fuel injector driver short circuit to battery positive, i.e. the driver voltage is greater than half the battery voltage when the driver is on.
- 2. Fuel injector driver short circuit to ground, i.e. the driver voltage is less than one third of the battery voltage when the driver is off.
- 3. Fuel injector driver open circuit, i.e. the driver voltage is greater than one third of the battery voltage but less than two thirds of the battery voltage when the driver is off.

	Fuel Injectors											
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold Value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination				
Fuel	P0201	circuit continuity -	voltage - drive off	1/3* Battery positive < voltage < 2/3* Battery positive	engine speed	> 80 rpm	immediately/	two driving				
Injector	to P0208	open circuit			battery voltage	7.5V < Battery positive < 17V	continuous	cycles				
	P0261/4/7 P0270/3/6 P0279/82	circuit continuity - short to ground.	voltage - drive off	voltage < 1/3 * Battery positive								
	P0262/5/8 P0271/4/7 P0280/3	circuit continuity - short to battery positive	voltage - drive on	voltage > 1/2 * Battery positive								

4.23 Idle Speed Control Actuator

4.23.1 Description

The load on an idling engine is a combination of both internal and external engine loads such as engine friction, water pump, air conditioning etc., which all change with time and operating conditions. The idle speed control actuator is required to enable closed loop idle speed control to compensate for these changing conditions, by regulating the airflow into the engine.

The device consists of two coils which use opposing PWM signals to control the position of opening / closing of the rotary valve. If one circuit fails the other is switched off by the ECM as soon as it recognises the fault. This prevents the valve going to a maximum or minimum setting. There is a default position, which is determined by a permanent magnet. In the default condition the idle speed is raised and remains fixed at approximately 1200 rpm with no load.

There are eight idle speed control actuator diagnostic checks: -

- 1. Opening winding driver short circuit to battery positive, i.e. the driver voltage is greater than half the battery voltage when the driver is on.
- 2. Opening winding driver short circuit to ground, i.e. the driver voltage is less than one third of the battery voltage when the driver is off.
- 3. Opening winding driver open circuit, i.e. the driver voltage is greater than one third of the battery voltage but less than two thirds of the battery voltage when the driver is off.
- 4. Closing winding driver short circuit to battery positive, i.e. the driver voltage is greater than half the battery voltage when the driver is on.
- 5. Closing winding driver short circuit to ground, i.e. the driver voltage is less than one third of the battery voltage when the driver is off.
- 6. Closing winding driver open circuit, i.e. the driver voltage is greater than one third of the battery voltage but less than two thirds of the battery voltage when the driver is off.
- 7. Blocked Idle Air Control (IAC) valve rpm error low, i.e. the engine speed is 100 rpm less than the target speed.
- 8. Blocked IAC valve rpm error high, i.e. the engine speed is 180 rpm greater than the target speed.

Idle Air Control Valve												
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination				
ldle Air	P1510	circuit continuity -	voltage - drive off	1/3 * Battery positive < voltage <2/3 * Battery engine speed > 80 rpm		immediately/	two driving					
Control		Open circuit			battery voltage	7.5V < Battery positive < 17V	continuous	Cycles				
Valve	P1513	circuit continuity -	voltage - drive off	voltage < 1/3 * Battery positive								
		short to ground										
opening	P1514	circuit continuity -	voltage - drive on	voltage > 1/2 * Battery positive								
		Short to battery positive										
	P1551	circuit continuity -	voltage - drive off	1/3 * Battery positive < voltage <2/3 * Battery positive								
		open circuit										
	P1552	circuit continuity -	voltage - drive off	positive								
		short to ground		P								
closing	P1553	circuit continuity -	voltage - drive on	voltage > 1/2 * Battery positive								
		short to battery positive										
	P0505	functional check	actual - desired RPM	> +180 rpm	vehicle speed	= 0 mph	2.0 to 3.0					
				< -100 rpm	ECT	> 80.25° C	sec/once per					
					IAT	> -9.75° C	driving cycle					
					altitude	> 0.712						
					adaptation	high range						
					engine load	< 2.5 m sec						

4.24 Fuel Pump Relay

4.24.1 Description

The Land Rover V8 engine has a return-less fuel system. The fuel pressure regulator and filter are fitted to the 'in tank fuel pump module'. The system pressure is maintained at a constant 3.5 bar (52 Psi), with no reference to intake manifold pressure. The ECM compensates for the non-constant pressure drop across the injector nozzles.

The fuel is supplied to the injectors from a fuel pump fitted within the fuel tank. The electrical supply to this fuel pump is controlled by the ECM via a relay and an Inertia fuel shutoff switch, which will turn off the fuel supply upon vehicle impact. The fuel system is pressurised to 3.5 bar as soon as the ECM is powered up, the pump is then switched off until engine start has been achieved. If the pump runs but the fuel pressure is out of limits, adaptive fuel faults are stored.

The ECM monitors the output power stage of the fuel pump relay drive for electrical faults. A fault is detected if any of the following conditions is satisfied: -

- 1. Fuel pump relay driver short circuit to battery positive, i.e. the driver voltage is greater than half the battery voltage when the driver is on.
- 2. Fuel pump relay driver short circuit to ground, i.e. the driver voltage is less than one third of the battery voltage when the driver is off.
- 3. Fuel pump relay driver open circuit, i.e. the driver voltage is greater than one third of the battery voltage but less than two thirds of the battery voltage when the driver is off.

	Fuel Pump Relay												
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination					
Fuel Pump	P1232	circuit continuity -	Voltage - drive on	voltage > 1/2 * Battery positive	battery voltage	7.5V < Battery positive < 17V	immediately/	no MIL					
Relay		short to battery positive			engine speed	> 80 rpm	continuous	illumination					
	P1231	circuit continuity – short to ground	Voltage - drive off	voltage < 1/3 * Battery positive	time after fuel pump off	> 0.5 sec							
	P1230	circuit continuity – open circuit	Voltage - drive off	1/3 * Battery positive < voltage < 2/3 * Battery positive									

4.25 Malfunction Indicator Lamp

4.25.1 Description

The OBD system interfaces with the driver via the MIL, which is located in the instrument pack. A bulb check takes place every time the ignition is switched to ignition position II and until the engine is cranked.

The ECM monitors the driver junction temperature to detect an electrical fault. A fault is detected if the following condition is satisfied: -

1. MIL driver short circuit to battery positive, i.e. the driver stage junction temperature exceeds a temperature threshold.

	Malfunction Indicator Lamp												
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination					
Malfunction	P0650	short circuit to battery positive	drive stage junction	> 150 °C	engine speed	> 80 rpm	immediately/	no MIL					
Indicator Lamp			temperature		battery voltage	7.5V < Battery positive < 17V	continuous	illumination					

4.26 Hill Descent Control Signal – Discovery Series II Only

4.26.1 Description

HDC operates in conjunction with the anti-lock braking system to provide greater control in off-road situations if necessary. HDC can be selected with the vehicle in any gear, but will only operate when low range gears are engaged with the vehicle traveling at less than 31 mph. During a descent, if engine braking is insufficient to control the vehicle speed, HDC (if selected) automatically operates the brakes to slow the vehicle and maintain a speed relative to the selected gear and the accelerator pedal position.

The ECM transmits throttle angle, engine torque, engine identification (V8 Thor) and transmission type to the SLABS control module to support the HDC system. This information is transmitted via a multiplexed PWM waveform.

The ECM has power stage diagnostics for the signal, with a fault being detected if any of the following conditions is satisfied: -

- 1. HDC link to the SLABS control module short circuit to battery positive, i.e. the driver voltage is greater than half the battery voltage when the driver is on.
- 2. HDC link to the SLABS control module short circuit to ground, i.e. the driver voltage is less than one third of the battery voltage when the driver is off.
- 3. HDC link to the SLABS control module open circuit, i.e. the driver voltage is greater than one third of the battery voltage but less than two thirds of the battery voltage when the driver is off.

	Hill Decent Control Signal												
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination					
Hill Decent	P1665	circuit continuity -	voltage - drive on	voltage > 1/2 * Battery positive	engine speed	> 80 rpm	immediately/	two driving					
Control		short to battery positive			battery voltage	7.5V < Battery positive < 17V	continuous	cycles					
Signal	P1664	circuit continuity – short to ground	voltage - drive off	voltage < 1/3 * Battery positive									
	P1663	circuit continuity – open circuit	voltage - drive off	1/3 * Battery positive < voltage < 2/3 * Battery positive									

4.27 Engine Speed Signal

4.27.1 Description

The engine speed signal is sent by the ECM to the instrument pack, Body Control Module (BCM) and SLABS/ABS control module via a direct hardwired connection.

The ECM has power stage diagnostics for this signal with a fault being detected if any of the following conditions is satisfied: -

- 1. Engine speed signal driver short circuit to battery positive, i.e. the driver voltage is greater than half the battery voltage when the driver is on.
- 2. Engine speed signal driver short circuit to ground, i.e. the driver voltage is less than one third of the battery voltage when the driver is off.
- 3. Engine speed signal driver open circuit, i.e. the driver voltage is greater than one third of the battery voltage but less than two thirds of the battery voltage when the driver is off.

Engine Speed Signal												
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination				
Engine	P0654	circuit continuity -	voltage - drive on	voltage > 1/2 * Battery positive	engine speed	> 80 rpm	immediately/	no MIL				
Speed		short to battery positive		·	battery voltage	7.5V < Battery positive <17V	continuous	illumination				
Signal	P0654	circuit continuity – short to ground	voltage - drive off	voltage < 1/3 * Battery positive								
	P0654	circuit continuity – open circuit	voltage - drive off	1/3 * Battery positive < voltage < 2/3 * Battery positive								

4.28 Environmental-Box Cooling Fan – Range Rover 38A Only

4.28.1 Description

This function is required to control the Environmental-Box (E-Box) mounted cooling fan. This fan provides cabin air into the E-Box to provide a cool temperature environment for the ECM fitted in the under-bonnet mounted E-Box. The temperature is determined by an internally (to the ECM) mounted temperature sensor. The fan will be switched on at 40 °C ∂ 15°C and also tested for 2 seconds every engine start.

The ECM has power stage diagnostics for this signal with a fault being detected if any of the following conditions is satisfied: -

- 1. E-Box cooling fan driver short circuit to battery positive, i.e. the driver voltage is greater than half the battery voltage when the driver is on.
- 2. E-Box cooling fan driver short circuit to ground, i.e. the driver voltage is less than one third of the battery voltage when the driver is off.
- 3. E-box cooling fan driver open circuit, i.e. the driver voltage is greater than one third of the battery voltage but less than two thirds of the battery voltage when the driver is off.

	Environmental-Box Cooling Fan – Range Rover 38A Only											
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination				
E-Box	P1671	circuit continuity -	voltage - drive on	voltage > 1/2 * Battery positive	engine speed	> 80 rpm	20 sec/	two driving				
Cooling Fan		short to battery positive		·	battery voltage	7.5V < Battery positive < 17V	continuous	cycles				
(Range Rover 38A	P1670	circuit continuity – short to ground	voltage - drive off	voltage < 1/3 * Battery positive								
only)	P1669	circuit continuity – open circuit	voltage - drive off	1/3 * Battery positive < voltage < 2/3 * Battery positive								

4.29 Low Range Signal

4.29.1 Description

The transmission range switch information and calculated range data are transmitted from the automatic TCM via the CAN bus.

The ECM performs a rationality test between these signals, a fault is detected if one the following conditions are satisfied: -

- 1. The transmission range switch information indicates low range and the calculated range information indicates high.
- 2. The transmission range switch information indicates high range and the calculated range information indicates low.

	Low Range Signal												
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination					
Low Range Signal	P1700	plausibility check of the transfer gear signal	or	lever position = low range and gear information = high range lever position = high range & gear information = low range	throttle position vehicle speed engine load engine speed time after start	> 19.92% > 62.15 mph > 4.0 msec > 2000 rpm > 5.0 sec	5.0 sec/ continuous	no MIL illumination (diagnostics all default to enabled)					

4.30 Controller Area Network System

4.30.1 Description

The CAN is a high-speed serial interface for sharing dynamic signals between control modules. CAN communications are 'self checked' for errors, if an error is detected the message is ignored by the receiving control module. Due to the high rate of information exchange (500K baud) the system has a high degree of latency. This allows for a high amount of errors to be present without reducing the data transfer rate.

The CAN communication system is a differential bus using a twisted pair, which is normally very reliable. If either or both of the wires of the twisted pair CAN bus is open or short-circuited a CAN time out fault will occur and the automatic TCM defaults to third gear. In order to alert the driver the 'sport' and 'manual' warning lights in the instrument pack will flash alternatively.

An error is detected if the ECM receives no CAN messages for at least 0.8 seconds or the duration of the automatic TCM retard request is greater than 10 seconds.

	CAN System												
Component/ System	Fault Codes	Monitoring Strategy Description	Malfunction Criteria	Threshold value	Secondary Parameter	Enable Conditions	Time Required	MIL Illumination					
Transmission Interface	P1776	TCM ignition retard plausibility test	duration of retard request	> 10.0 sec	vehicle speed	> 24.86 mph	10.0 sec/ continuous	no MIL illumination (MIL request by TCM)					
	P0600	CAN Time-out (bus check)	no CAN messages	> 0.80 sec			immediately/ continuous	two driving cycles					

4.31 Positive Crankcase Ventilation System Monitoring

4.31.1 Description

M17 0155

- 1. Intake air
- 2. Left hand rocker cover breather tube
- 3. Oil separator in right hand rocker breather tube

A spiral oil separator is located in the stub pipe to the ventilation hose on the right hand cylinder head rocker cover, where oil is separated and returned to the cylinder head. The rubber ventilation hose from the right hand rocker cover is routed to a port on the right hand side of the inlet manifold plenum chamber where the returned gases mix with the fresh intake air passing through the throttle butterfly valve. This pipe is primarily for part-load breathing and is connected to the engine via a restrictor that prevents an excessive vacuum building up in the crankcase at small throttle openings.

The stub pipe on the left hand rocker cover does not contain an oil separator or a restrictor and the ventilation hose is routed to the throttle body housing at the air inlet side of the butterfly valve. This pipe is for breathing at higher loads. Flow through this second pipe is negligible under normal driving conditions.

The ventilation hoses are attached to the stub pipes by metal band clamps.

Disconnection of the part-load breather is likely to result in a tendency of the engine to stall when returning to idle and the quantity of un-metered air, which flows into the intake manifold, will result in the detection of a fuel system fault by the OBD system.

For this reason, there are no separate monitors for compliance with the requirements of Positive Crankshaft Ventilation (PCV) monitoring.